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; OVERVIEW
! Tensile stress-strain behavior has been widely recognized as the most important
| single property for ceramic matrix composites. In this study, the terisile failure mechanism
of the ceramic matrix composites has been investigated.

First, the dog-bone tensile specimens made of unidirectional ceramic matrix
composite namely: Nicalon Fiber (Si3C40, P phase) and CAS IT (CaO-Al;,03-28i04)
marrix with fiber volume fractions of 30% and 40% were tested in room as well as in
elevated temperatures. All tests were conducted inside a chamber of a scanning electron
microscope (SEM). Therefore, imagc§ at various magnifications revealing the intermediate

tensile damage events in the composite specimen were obtained in-situ along with other

testing data.  Since the lens in the SEM is always kept at least one inch away from the
specimen during testing, with magnifications ranging from SOx to as high as 3000x, the
heat on the specimen won't damage the electron lens. This makes it possible to obtain
images while doing tensile testing in high temperature. The damage histaries of the
speciren at different temperatures were first observed on the monitor of the SEM and
then caprured immediately cither by Polareid camera or video copy processor. Tensile
stress-strain curves. were constructed at different temperatures (starting from room
texperature, then 250 ©C, 400 ©C, 600 ©C and 700 ©C). All tests exhibited a non-linear
stress-strain behavior. The effect of specimen size (meaning specimens with different
| thickness or width in the gauge section) on the failure behavior was discussed. It was
' found that while thin specimens (about 0.0625 "-0.07 " in either thickness or width) tend

to have a tail at failure, rewaining some Joad carrying capability, thick specimens (greater
than 0.0725" on both thickness and width) fail catastrophically, breaking into two pieces.
The effect of temperature on tensile failure strength was found not quite significant within
the temperatures tested. Micrographs taken at different loading and temperatures revealed

: )
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the details of damage process from first matrix cracking ro muldple mawix cracking,
sequential random fiber slipping and fiber breaking to eventual composite failure by
sudden fiber pull-out and collective fiber breaking somewhere in the gage section. Mayix
crack density versus the stress with different fiber volume fraction and "at different
temperatures was also studied. The results indicate that, for specimens with 30% fiber
volume fraction, the matrix crack initiation stress is less than that of 40% fiber volurne
fraction. And the matrix crack density (defined as the number of matrix cracks per mm)
for specimens of 40% fiber volume fraction is higher than that for those with 30% fiber
volume fraction. It is also noted that marix crack inidation stress was lower in high
temperature than in room temperature for specimens of both 30% and 40% fiber volume
fraction.

Then, analytical models based on finite element method and the singular integral

equation technique were used to explain the tensile damage behavior of the ceramic marrix

. composites. The H-shaped crack geometry was used in the finite element model to study
j the interface progression and its effect on the tensile damage behavior. The results from
finite element mode] compare well with the experimental results. The singular behavior at
the transverse angd interface crack tips were studied using singular integral equations. The
sess intensity factars and strain energy releasc rates were calculated for various crack
geomenry and were used to explain the failure mechanism of the composites. The results
from the singular integral equation technique predict that once the transverse matrix
cracks are formed, they will propagate to the fiber/matrix interface. This behavior
conforms to the observed behavior. Both models assume that the composite consists of
equal spaced fiber stips in the matrix material and the problem is simplified as two
dimensional. '

i b
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1 INTRODUCTION
The research on ceramic matrix composite materials has intensified in recent years

due to some of the appealing features of ceramics; such as great stability and resistance to

oxidation under hostle (high temperature or corrosive) environments. In comparison to
their mctal]ic and polymer counterparts, ceramics, being brittle and low in tensile strength
and fracture toughness, traditionally have had litle use in structural applications.
However, when reinforced with fibers, ceramic matrix composites exhibit an increase in
i fracture toughness and tensile strength in room as well as high temperatures [1-2]. A
variety of ceramic matrix composite systems have been or arc being developed for
engineering applications ranging from cutting tools to acrospace structures [3-4). For
examples, one can find studies on the following systems of ceramic matrix composites:
Clglass (5}, C/SiC [6], SiC/glass [7], SiC/LAS glass ceramic [8-13], SiC/BMAS glass-
ceramic [13], SiC/alumina [14], SiC/mullite (15), SiC/SiC (16).

In the aforementioned studies, experimental results on damage behaviors of ceramic

matrix composites were obtained by failing the specimens with either tensile or three-point
bending loading at room or elevated temperature [9-12]). During the thermomechanical

testing, the load vs. the displacement (and hence the stress vs. the strain) curves were

recorded but only the postmortem damage parterns were identified by cither a scanning
electron or an optical microscope. It is well known that the stress-strain relations of most
ceramnic- matrix composites under thermomechanical loading usvally exhibit nonlinear
behaviors. For such ceramic-matrix composites, the failure mechanisms that cause this
nonlinear stress-strain relationship is more complex than that of their monolithic
counterparts. They come from the results of multiple matrix cracking and sequential fiber
treaking due to weak interfacial bonding between the fibers and the mamix. The
approaches described above although proved important data to the overall understanding

' 3
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of the failure mechanisms of the ceramic matrix composites, they fail to correlate the
’ nonlinear stress-strain (and hence the stiffness reduction) behavior with the intermediate
‘ damagé progression events inside the ceramic matrix composite Specimen. A good

experimental approach should provide information on the damage history of the specimen

that can be used to correlate the nonlinear stress-strain (and hence the stiffness reduction)

behavior with the intermediate causative damage events that occurred on the ceramic
! matrix composite specimen. Recently, in [17-18], the tensile behavior of 2 Nicalon/CAS I
system was studied. Damage pattems were identified and micrographs were taken to
capture the matrix crack propagation. However, these micrographs were not taken at the
same locaton and therefore cannot truly correlate the damage progression with the
nonlinear stress-strain behavior. And those studies dealt only with room temperature. In
this study, eipcn'mcms were conducted inside the chamber of a scanning electron
microscope equipped with a custom designed tensile/heating substage. This made it
possible to directly observe and record in situ the progressive tensile darnage behavior of

the ceramic matrix composites from the very first matix crack to complete fracture of the
specimen at any location in the gage section. Test results for both room and elevated
temperatures were obtained. One particular advantage of using SEM is for high
tcmperature testing. Since in SEM, unlike in optical microscope, the electronic lens is
‘always kept at least one inch away from the heated specimen, images can be obtained at
magnifications as high as 3000x. without damaging the electronic lens during high
temperature testing. This makes the technique very appealing for high temperarure testng.

Among the factors that affect the overall strength and toughness of the ceramic
matrix composites, the following are generally ‘considered the most important: (a) the
thermoelastic properties of the constituents (i.¢., the matrix and the fibers); (b) the relative

strength of the interface berween fibers and matwix; (c) the volume fraction and

|
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arrangement of the fibers; and (d) the ambient temperature. Based on the above
considerations and observations during the test, two analytical models have been
developed. One model utilizes the finite element technique and is based on a periodic
multiple-row H-shaped crack configuration. The other uses the singular integral equation
method with periodic transverse and interface crack configuration. In both models the real

problem is formulated in two dimensional domain.

2 THE EXPERIMENTAL WORK

The experimental work is vital in this study. It provides important insight and data
for the understanding of the failure process of this type of composite material. And it also
provides the foundation upon which analytical models are based. The technique used in

this study is believed to be first developed in the area of experimental mechanics research.

2.1 THE TESTING PROCEDURE

Figure 2.1 shows a schematic drawing of the experimental set-up which uses a

- scanning electron microscope equipped with a tensile and heating substage to perform the

micromechanical tensile testing of a ceramic matrix composite specimen under high
temperature. In this study, a Hitachi S-2400 scanning electron microscope is used which
is equipped with a custom designed E.F. Fullam tensile/heating combined substage. The
specimen used is simple “dog-bone” shaped specimen such as the one shown in Fig, 2.2.
The actual cxpcﬂmental set-up and tensile/heating substage are shown in Fig. 2.3. The .
material used in this study (Nicalon-fiber/CAS II matrix composite) was obtained from
Corning Glass Works. Table 2.1 shows the thermomechanical properties of the
constituents of the composite. Specimens of both 30% and 40% fiber volume fractions

were tested. To study the size effect, we varied either the thickness or the width of the




specimen for specimens with 40% fiber volume fraction. Fibers were unidirectionally
aligned with the gage-length direction. The tensile specimens were made by first cutting
the large rectangular ceramic matrix composite panel as supplied by Corning Glass Works
into smaller rectangular plates using a Leco YC-50 Cari/Cut fine-mesh diamond saw.
Then the gage section of the specimens was shaped using the same diamond saw with
special a holder. The gage section of the specimens was grounded to its dimensions using

a Dremel motorized hand-held grinder with silicon carbide and alumina oxide stones.

Table 1. Properties of Nicalon fiber and CAS II matrix

CAS II Matrix Nicalon Fiber
Nominal Composition Ca0-Al,02-28i0y Si3C,0
Elastic Modulus Msi(GPa)
250C 13.8 (95) 28.3 (195)
1000°C 13.5 (93) 22.9 (158)
12000C 11.7 (81) 22.5 (155)
Thermal Expansion(106/°C)
5.0 (25°-1000°C) 3.1 (25°C-200°C)
4.0 (25°C-1000°C)
Fracture Toughness Kj~(MPa m!/2)
25°C 2161011 | e
1000°C 13040.17 | -

Fiber/Matrix Interfacial Shear Strength

25°C 15.712.0 MPa

[




To conduct high temperature testing, the bottom surface of the central part of the
specimen as shown in Fig. 2.1, was placed in direct contact with the E.F. Fullam heating
element (called heater) which is a rectangular plate made of ceramic material with fuse
wire circuit inside. The maximum heated area of the heating element is 0.65"x0.25". It
can sustain a maximum working temperature of 1100°C and is equipped with a water-
cooled heat sink for continuous operation. Temperature is measured by three platinum
30% rhodium-platinum 6% rhodium thermocouples and controlled by a stand-along DC
power supply with adjustable voltage and current knobs. Since the whole operation is
conducted inside the chamber of a scanning electron microscope (in this study a Hitachi S-
2400) which is usually vacuumed at 1.5x10°6 Pa or better, no heat-loss will occur due to
thermal convection. The top surface of the specimen was first polished using fine-grade
diamond paste containing 15-, 6-, and 1-micron particles until the surface was well
finished and the fibers and matrix could be seen clearly under a Nikon UM-2 microscope.
Then the specimen was cleaned using a Bronson ultrasonic cleaner for 10 minutes. Finally
the bottom surface of the specimen was coated with silver paint to prevent electric
charging and to achieve better image before it was mounted into the E.F. Fullam tensile
substage. Because it is very difficult to drill holes in a ceramic composite specimen, the
top and bottom ends of the specimen were mounted through stainless steel clamps with
serrated teeth to the crossheads of the E.F. Fullam tensile substage. To help in alignment
and prevent slippage during testing between the ceramic composite specimen and the
serrated clamps, cyanoacrylate-based extra-strength epoxy was also applied on the clamp-
specimen interfaces. The clamped specimen was then mounted to the tensile substage and
was left to cure for at least 20 hours to ensure that the epoxy had hardened and was

completely dry before testing.




Finally, the specimen together with the tensile/heating assembly was placed inside
the chamber of a Hitachi S-2400 scanning electron microscope which is also equipped
with a backscatter detector to enhance the image. By using the X-Y staging control of the
scanning electron microscope, micrographical patterns within the central gage area can be
observed and recorded. The tensile substage is driven by a variable-speed motor which
has a maximum speed of 90 rpm. Through a gear mechanism of 100:1 reduction ratio, the
crosshead speed can be controlled within 0.127 mm/min (or 0.005 in/min). The tensile
stage can provide a tensile load of up to 455 kgs (1000 lbs). The applied load was
increased gradually until the specimen failed totally. The damage to the composite as the
load increased was first observed on the monitor of the SEM. Then a sequence of
micrographs were taken to get hard copies of various microcracking and damage patterns
of the specimen at‘differcnt loading levels. Since the specimen is very thin thickness
(ranges from 1.0 mm to 2.0 mm or 0.04" to .08"), it is expected that failure will occur
through the thickness. Thus the recorded micrographs of the surface fracture can
represent through-the-thickness failure of the specimen. Quality of the image and hence
the quality of the micrographs was further enhanced by transmitting the image signal to a
computer which is equipped with an Imaging Technology Advanced Frame Grabber
(AFG) digital imagc analyzer hardware. With the help of the installed software, sharper
images were obtained through the contrast and edge enhancement operations. And text
can be added to the micrographs.

The tensile stage is designed in such a way that when the load increases, the top and
bottom crossheads move in opposite directions to minimize the shift of the observed site.
This is achieved by machining the stainless-steel loading columns into worms of reverse
directions. Thus searching and refocusing the damaged zone after each load increment are

very handy. The applied loads were recorded by a minjature load cell equipped with a




digital readout. The relative displacements of the crossheads were measured by a high-
precision, strain-gage-type extensometer which is also fitted with a digital readout. The
load-displacement data were recorded and converted into a stress-strain curve. The
evolution of damage recorded by micrographs were identified with the corresponding
stress and strain. Finally the ruptured specimens were observed under a Nikon UM-2

universal measuring microscope for further postmortem examination.

22 EXPERIMENTAL RESULTS
2.2.1 Stress-Strain Relations

Typical stress-strain curves for the room-temperature, tensile damage behavior of a
Nicalon/CAS II with 30% and 40% fiber volume fractions are shown in Fig. 2.4 and Fig
2.5 respectively. As depicted in these two figures, the tensile damage behavior of the
ceramic matrix composite specimen is characterized by a nonlinear curve made up of
three sections. The characteristics are the same for all tests conducted in this study, even
though microscopically these specimens might look quite different. Upon load application,
the relation between stress and strain was linear and its slope was equivalent to the
stiffness of an intact Nicalon/CAS II specimen (18.15 Msi or 125 GPa for Vf = 30% and
19.6 Msi or 135 GPa for V¢ = 40% ). For specimens with 30% ﬁber volume fraction, the
slope changed at about 25 ksi (Point A in Fig 2.4). While for 40% fiber volume fraction,
the slope changed at about 30 ksi (Point A in Fig. 2.5). First matrix crack is believed to
start at or slightly below of point A in both Vg =30% and 40% cases. This can be further
inferred from the relationship between matrix crack density and tensile stress as will be
discussed later in this section. In most cases, matrix cracking initiates either at the edge or
at a location where the fiber spacing is maximum. Fig 2.6 shows some micrographs taken

during one test. The second micrograph in Fig. 2.6 clearly indicates that matrix crack
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initiated not from the voids but from the location where spacing between the two adjacent
fibers is the largest. While in Fig. 2.7, matrix cracks initiated from both the edge and a
location where fiber spacing is very large if not the largest. The matrix cracks then
propagate perpendicular to the fiber direction throughout the whole width of the gage
section to form multiple matrix cracks. Unlike the monolithic materials where failure is
controlled by a critical crack size, the failure of the composite goes through a process of
damage accumulation. The composite is insensitive to the voids and can tolerate very large
cracks before failure. At point B (35 ksi for Vg = 30% and 40 ksi for V¢ = 40%), the
development of multiple matrix cracks reached a saturated stage. Regularly spaced matrix
cracks were formed in the whole gage section of the specimen. This happened with only a
small increment of tensile stress (about 10 ksi, as can be seen from point A to point B in
both Fig. 2.4 and Fig. 2.5). Further increase of tensile stress creates no or very little
additional matrix cracking. Matrix crack opening, fiber debonding, breaking and slipping
will dominate the rest of the failure process. Upon reaching point C ( about 62 ksi for V=
30% and 58 ksi for V¢ = 40% ), one surface of the matrix cracks in the gage area started
to open up with crack opening displacement far more larger than the rest of the matrix
cracks. This then was accompanied by massive fiber breaking and pull-out in that surface.
And the eventual scpafation of the specimen caused the load to drop substantially.
Depending on whether the specimen is thin (either in thickness or in width) or thick, there
might be a tail in the stress-strain curve at the load drop. Thin specimens tend to have a
tail at failure as indicated in Fig. 2.5 where both thin and thick specimens were tested. One
explanation is that thin specimens are prone to bending during the test. This might be
responsible for the lower failure strength and a tail at failure for thin specimens. For thick
specimens, failure is always catastrophic. Fig. 2.8 shows the progression of damage for a
thin specimen. At failure, the specimen (this occurred only for thin specimens) was kept in
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one piece by the fibers. Further loading after failure was possible as shown in Fig. 2.9.
Micrographs in Fig. 2.10 however, show the catastrophic failure of a thick specimen.
Upon reaching the maximum stress value, the specimen fails catastrophically with a very
big crack opening at the failure surface. Observation on the failure surfaces of the
specimens with 30% and 40% fiber volume fractions, indicated that there are significant
differences in both the amount and the length of fiber pull-out between the two specimens.
For specimens with V¢ = 30%, both the amount and the length of fiber pull-out at failure
surface are less than those with V= 40% as can be seen from Fig. 2.11 and Fig. 2.12. The
lesser amount of fiber pﬁll—out and the shorter fiber pull-out length is an indication of
stronger interfacial bonding strength. This explained why the tensile failure strength of Vg
= 30% is slightly higher than that of V¢ = 40%. The smoothness of fiber pull-out surface
as shown in Fig. 2.13 is evidence of non-chemical bonding between fibers and matrix
which generally implies weak interfacial bonding strength. The fiber pull-out length and its
amount also deviated substantially among the same batch of specimens as shown in Fig.
2.14, implying that the fiber/matrix interfacial strength may vary for the same batch of
ceramic matrix composite specimens. This is also reflected by the fluctuation of the
maximum tensile stresses (Point C) among these tests.

Figure 2.15 is a set of micrographs showing typical damage patterns of the specimen
‘at different magnifications after the stress reached point B in the stress-strain curve. At
close-up, one can clearly identify the matrix crack opening, fiber breaking, slipping and
fiber bridging of the matrix cracks. Also from Fig 2.15, one can observe the typical "H"
shaped crack pattern formed by intersection of the transverse matrix cracks with interface
cracks during the failure process. This "H" shaped crack configuration will be used in the
analytical models discussed later. Besides the easily identified matrix crack patterns, fiber
breaking also exhibits some patterns as shown in Fig. 2.16 and Fig. 2.17. In Fig. 2.16, one
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fiber breaks at a location away from the matrix cracks first, then a ray of breaking fibers is
form along a line slanted away from the line of matrix cracks. Fiber breaking occurred
mostly after the stress reached point B, i.e. after the multiple matrix cracks have been
formed. Micrograph in Fig 2.17 gives another pattern of fiber breaking in which fiber
breaking is randomly distributed throughout the whole gage section.

The stress-strain relations of the Nicalon/CAS II composite at high temperatures
will be discussed later.

2.2.2 Matrix Crack Density

Matrix crack density defined as the number of matrix cracks per 1 mm length in
fiber direction, was used to characterize the failure process of the composite. With the
help of the scanning electron microscope equipped with a backscatter detector, images
reflecting the tensile damage pattern of the composite from the first matrix crack to the
eventual failure of the composite were captured. Fig 2.18 and Fig. 2.19 are some
micrographs showing the development of matrix cracks with increasing stresses for V§ =
30% and Vg = 40% respectively. Based on the number of cracks counted in the frame
shown in these micrographs and the associated stress level, the matrix crack density versus
tensile stress curve was constructed as shown in Fig 2.20 and Fig 2.21 for 30% and 40%
fiber volume fractions respectively. From the matrix crack density curves, it is seen that
the matrix crack initiation stress is 25 ksi for V¢ = 30% and 30 ksi for V¢ = 40%. These
results happen to coincide with point A on the stress-strain curves as shown in both Fig

2.4 and Fig 2.5.

2.2.3 Effect of Fiber Volume Fractions
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As can be seen from the stress-strain and matrix crack density curves for
specimens of both 30% and 40% fiber volume fractions, the fiber volume fraction affects
the tensile behavior substantially. Matrix crack initiation stress is less for specimens with
less fiber volume fraction (compare points A in Fig 2.4 and Fig. 2.5). This result is in
agreement with that given in [19]. But the tensile failure strength for V¢ = 30% is higher
than that for Vg = 40% (points C in the stress-strain curves). This might be the result of a
relatively stronger interfacial bonding strength for specimens with Vg = 30%. The matrix
crack density was found to increase with increasing fiber volume fraction of the specimen.

This finding also agrees with that reported in [19].

2.2.4 Temperature Effects

The same specimens were tested in the SEM at 250 ©C, 400 ©C, 600 °C and 700
OC. Fig. 2.22 and Fig. 2.23 show the stress-strain curves obtained at higher temperatures
for fiber volume fractions 30% and 40% respectively. Withm the temperature range tested
( room temperature, 250 °C, 400 °C, 600 OC and 700 ©C), no significant changes in
ultimate tensile strength have been observed in the stress-strain curves. Fig. 2.24 and Fig.
2.25 show the temperature effects on the ultimate tensile failure strength of the specimens
for both 30% and 40% fiber volume fractions. There was a slight increase in tensile failure
strength for Vg =30% at T = 250 ©C . Micrographs showing the final failure surfaces of
the specimens with V¢ = 30% at different temperatures are compared in Fig. 2.26. It is
seen that both the amount and the length of fiber full-out are the smallest for T = 250 oC.
This might explain why the tensile strength is maximum at T = 250 OC. For Vi = 40%, this
increase of tensile strength happened at T = 400 ©C. The phenomenon of slight increase of
tensile strength might be the result of release of thermal residual stress and changing of

interfacial bonding strength due to temperature. Matrix crack density did not show
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significant changes with temperatures for Vg = 30%. Micrographs in Fig. 2.27 show the
development of matrix cracks at T = 600 OC. Fig. 2.28 shows the relation between the
matrix crack density and temperatures (ranging from room to 600 °C) for V¢ = 30%. But
for Vg = 40%, it was found that matrix crack density decreased with increasing
temperature as shown in micrographs of Fig. 2.29 taken at T = 400 °C. Fig. 2.30 plots the
relation of matrix crack density versus temperature for V¢ = 40%. Matrix crack initiation
stress also decreased slightly at high temperatures for V¢ = 40%. Micrographs in Fig 2.31
and Fig. 2.32 show the fiber breaking and slipping process in high temperatures. Since this
composite is basically a glass based material, the stress-strain behavior is expected to be

quite different when temperature reaches over 800 °C.

2.2.5 Specimen Sizing Effects

To study the size effect, specimens of 40% fiber volume fraction with different
thickness and width combination were used in the tests. It was found that specimens with
either relatively thin thickness or width (about 0.0625~0.07") ;cnded to have a quite
different failure pattern than that with thicker one (greater than 0.0725" in both thickness
and width). For thin specimens, first, the tensile strength was quite lower than that of thick
specimens; second, when the specimen failed, it had a tail in the stress-strain curve
indicating that it still retained some load carrying capability and the specimen was kept in
one piece by the fibers. The thick specimens on the other hand always failed
catastrophically. A comparison of tensile strength between thin and thick specimens
against temperature is shown in Fig 2.33. The discrepancy between the two cases might be
the result of bending that might have occurred during the test as explained earlier. Size
effect of the specimens on the flexural strength of unidirectional carbon epoxy composites

has been reported in the literature [20-21]. Since there are some definite relations between
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flexural strength and tensile strength, tensile strength will be affected by the size of the
specimen as well. From the standpoint of Weibull failure theory, thick specimens tend to
contain large defects, therefore they should fail at a lower tensile loading. Since the
composite with a relatively weak interfacial bonding strength is insensitive to the defects,
the opposite results were obtained here. The specimen didn't fail by one defect or crack
when it reaches the critical size, but through the damage accumulation all over the gage
section. For thin Nicalon/CAS II specimens with 40% fiver volume fraction, the stress-

strain curves at high temperatures were shown in Fig. 2.34.
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3 THEORETICAL MODELS

As explained earlier, during testing, it was found that, after the initiation of
transverse matrix cracks at point A (in both Figs. 2.4 and 2.5), with increasing load,
regularly spaced multiple transverse cracks were formed. When the tensile stress reached
a certain value, almost no new transverse cracks were generated until failure. During this
process further transverse matrix cracks opening, fiber debonding, breaking and sliding
at the fiber/matrix interface is believed to dominate the failﬁrc process. This typical
failure feature is best described by the periodic H-cracks configuration shown in Fig.
2.15. Two models, one using singular integral equation technique, and the other using
finite element method, are adopted to either explain the failure mechanism or simulate
the observed tensile behavior of ceramic matrix composites.

The problem of concern is basically a three dimensional problem because of the
distribution of fibers in the matrix. However, if one assumes that the fibers are made of
composite strips of width 2H,, the problem can be treated in two dimensions.

3.1  Singular Integral Equations Formulation.

It has been shown that the singular integral equation technique is a very powerful
tool in dealing with crack problems. Fig. 3.1 is a sketch of the proposed mathematical
model. It is assumed that fibers are equally spaced in a ceramic matrix, and that the
thermomechanical and fracture properties of the fiber and the matrix are known. The
model contains cracks perpendicular to as well as parallel to the fibers at the fiber/matrix
interface and which are assumed to be periodic. By choosing different geometrical
parameters, one can generate various crack geometries. For example: If one sets a;=0,
a,=H, and b,=0 in Fig. 3.1, then the model reduces to a geometry with periodic H-shaped
cracks as shown in Fig. 3.2. This configuration closely resembles the actual cracked

geometry observed in testing.
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3.1.1 Formulation of the problem
3.1.1.1 Equilibrium equations

The equilibrium equations expressed in terms of displacements for orthotropic materials

are as follow:
o2u o%u oZv
ﬁlaxz + dy2 + ﬁ3ax3y =0 (3.1a)
ov oZv ou
w2’ BZayz + BBaxay =0 (3.1b)

where By, B, and B, are material constants [23]

Assume that the solutions are of the following forms:

u(x,y) = ud(x,y) + u@(x,y) (3.2a)
v(x,y) = vi(x,y) + v®(x,y) (3.2b)
where
uDx,y) =‘i‘ J:o f(o,x)cosoydo. (3.32)
viD(x,y) =;2t‘ I: g(o,x)sinoydo (3.3b)
and
u@(x,y) =% J: h(ot,y)sinaxdo (3.4a)
v(x,y) =‘12't' j: {(o,y)cosaxda (3.4b)

here f(o,x), g(c,x), h(a,y) and i(o.y) are shape functions
Substituting (3.3ab) and (3.4ab) into (3.1ab), one gets the following characteristic
equation:

+ B4I‘2 + B52 =0 (3.5)

2. -
where By = By : and Bs= \132/51
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and the roots are obtained as:
1) =- 13 = Wy + iwg = \/(-Bs+ Be)2
rp =14 = w3 +iwg =\[-By - B2
where Bs =/Ba? - 452

Then we have:

flor,x) = A(0)eF19X + B(0))e T10X +C(x)el20X + D(o)e T20X (3.62)
g(o,x) = B7[A(0)ef 10X - B(o)eT10X]

+ Bg[C(0r)ef20X - D(or)eT20X] (3.6b)
h(osy) = E(0)ef190¥/Bs + F(o)eT10y/Bs

+ G(o)er20/Bs + H(o)e-T20y/Bs | (3.6¢)
Koy) = BolE(e)er19¥/Bs - F(oe-T10/Bs]

+ B1olG(c) er20¥/Bs - H(a)eT20¥/Bs] (3.6d)

Here two types of material will be distinguished according to whether the roots of
the characteristic equation are real or complex.
Material type I: where both r; and r; are real numbers(wy=w4=0).

Material type II: where rj and r, are complex numbers.

Applying symmetry conditions:
u(x,y) =-u(-x,y) (3.7a)
v(x,y) = -v(x,-y) (3.7v)
we obtain:
B(0) = -A(r) D(0) = -C(cx) (3.8ab)
F(o)) = -E(er) H(a) = -G(0)) - (3.8¢cd)

Material type I will be considered because most materials fall into this category..
Based on the fact that both u and v vanish when y — o, and that the problem of concern

is symmetrical about the x axis, the displacement functions can be written as:




u(x,y) = -4;‘[: [A(a)sinh(w;ox) + C(o)sinh(w30x)]cosoydo
+% j: [(E(oye-W110y/Bs + G(oerW3loy/Bsjsinoxdor (392)
v(x,y) = -:'; J: [B7A(a)cosh(wjax) + BgC(o)cosh(wzax)]sinotydo.

- % J: [Bosign(w)E(c)eW1109/Bs + B osign(ws)G(ae-Wsley/Bslcosoxdo  (3.9b)

3.1.1.2 Stress-strain relations

Let A = (l—vx;!v;m)

ExEy °
then for orthotropic materials, under plane stress conditions'
.
Ox(X,y) “E L Ex + : Ey (3.10a)
EyA
Oy(x.y) = Eﬁ‘ + -—-ay (3.10b)
Txy(x,y) = ny’ny (3.IOC)

where Ey, By, Gxy, Vxy and vy are the othortropic material constants.

3.1.1.3 Strain-displacement relations

In terms of u and v, the strains are glvcn as:

du ov.
ex=3p &y = dy o and Yxy = (ay I (3.11abc)

Substituting eqns (3.9ab) into (3.11) and then into (3.10), the stress can be written

as:

ﬂ(l—;”ExV: )Ux(x,}’) = J:o ['ylE(a)e'lwlla)’/Bs + ‘YZG(a)c-|W3|(xy/ BS]occosaxda

+ r [2y3A(a)cosh(wyox) + 2y4C(a)cosh(wiox)]acosoydo (3.122)
0

Ml ) = [ trsBooe wloy/Bs + ygGlayerWaloy/Bsjoacosaxdar
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+ _[: [2v;A(0)cosh(w,0x) + 2ygC(ct)cosh(waax)]acosoyde  (3.12b)
kL b .
Gy xy(%y) = jo [y E()erW110y/Bs + y,,G(or)e-W3loy/Bsjosinoxdar

¥ jo" [2¥6A(0)sinh(w;0x) + 2y;oClo)sinh(wyox)lasinoyder  (3.126)

The above expressions are for plane stress problems. It can also be used for plane

strain problems with the following substitutions:

E
Vyx = 5 Vyxo Vay = Sy,
yX=E,'yx xy = B, Vxy

3.1.2 Boundary and continuity conditions

O1xxH;,y)=0xx (-Ha.y) O<y<oo (3.13a)
tlxy(I-Il,y)=12xy(-H2,y) O<y<eo (3.13b)
u,(H;,y)=u,(-H,,y) O<y<b, or b,<y<ee (3.14a)
vi(H,,y)=v,(-H,y) O<y<b, or b,<y<ee (3.14b)
O1xxHy,y)=ps(y) b,<y<b, (3.152)
Tixy(HpY)=pa(y) b;<y<b, (3.15b)
Aty = 0 (cracks normal to the interface)
v,(x1,0)=0 -H,<x,<-a; and a,<x,<H, (3.16a)
vy(x,,0)=0 -H,<x,<-a, and a,<x,<H, (3.16b)
Oryy(X1,0)=-ps(x1) -a,<x,<a; (3.17a)
Gayy(X2,0)=-p(x5) ~8<Xy<2; (3.17b)
Tixy(x1,.0)=0 -Hy<x<H; (3.18a)
Toxy(%2,0)=0 -Hy<x,<H, ~ (3.18b)

Atx;=0o0rx2=0
u,(0,y)=0 0<y<eo (3.19a)




u,(0,y)=0 0<y<oo
Tixy(0:y)=0 0<yseo
Txy(0:y)=0 O<sysee

22

(3.19b)

(3.20a)
(3.20b)

where p,(x,) is the normal traction on the fiber crack surfaces (-a,<x,<a; and y=0),

p,(x,) is the normal traction on matrix crack surfaces (-a,<x,<a, and y=0), p;(y) is the

normal traction on crack surfaces along the interface (x;=H;, b;<y<b,) and p,(y) is the

shear traction on crack surfaces along the interface (x,=Hj, b;<y<b,).

Define:

d 0 9v,(X,,0)
Y e SR VOB v

d
¢:(y) =a%[vl(+pr) - vo(-Ha)1, 94(y) =a—y{u1(+Hl.y) - u(-Hpy)]  (3.21abed)

Then, from (3.14ab) and (3.16ab), one can write:

$,(x,)=0 a;<Ix,|<H;
¢,(xp) =0 2;<ix,I<H,
$:0) =0 Ocy<d, &  byy<ee
8y =0 Ocy<h& & by<y<e

(3.22a)
(3.22b)
(3.22c)
(3.22d)

Using eqn(3.9a) and (3.12c), eqns(3.19a,b) and (3.20a,b) are satisfied identically.

Substituting eqns(3.18a,b) into (3.12¢) wellave:
E(o) = 12G(0),  E*(a) = 1%G%@)
T T

Then egns(3.9a,b) and (3.12a,b,c) become:

u(x,y) = i:’; j: [A(c)sinh(w,0x) + C(c))sinh(w3ax)]coseydo:
+2 r E(o)[e-W1loy/Bs - Lte-twslay/Bssinoxdor
R Jo Y2

v(x,y) = -i— I: [B,A(a)cosh(w,;0ax) + BgC(a)cosh(w;aix)]sinarydow

(3.92%)
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";2‘;' J: E(a)[BgSign(Wl)C'lwﬂay/ﬁS - z‘:"z'ﬁlosign(ws)e‘lwslaymslcosaxda (3.9b*)

1__ o0
M ey )Ux(x,y) "'J E(a)fy,eWaloey/Bs - Tutertwyloy/Bslocosaxdo
2By o ()

+ f [2y,A(c)cosh(w,0x) + 274C()cosh(wsax)]ocosaydo (3.12a%)
T(1-VxyVyx) I wyloiy/Bs . v ile-lwslocy/

2Ey oy(x,y) L E(o)[yse™ 1!y Bs Y‘“Yuc 3100y Bs]acosaxdoz
+ j: [2v,A(@)cosh(w,0x) + 2y,C(0)cosh(wso)]awcoscrydor (3.12b%)

2(1; Txy(%y) = Jm By, [eWiloy/ Bs - e-wsloiy/Bsjosinaxdor
Xy 0

¥ r [2%,A(0)sinh(w,ax) + 2¥;oC(0)sinh(w0)]ousineryder (3.12¢%)
0

Applying eqns(3.16a,b), at y =0, one obtains:

2 . .
v,(x1,0)= = L E(a)[B9sxgn(w1)-ﬁﬂ,omgn(wg]cosaxlda a,<x,<H, (3.23a)

o *
Vy(%p0)= % _[o E*(a)[ﬁg*sign(w,*)-%;ﬁw*sign(w3*)]cosax2da a<x<H,  (3.23b)

ov,(x,,0) 2 = .
o, (xp)= .__13(_1)’;_). = '1; L vsE(@)osinox,da,

g 22202
()=

- Ty XE* i
%, T L Y15 *E¥ (o) ousinox,do

The inverse Fourier transform gives:
. ™
E()=""—1 ¢,(xpsinox,dx, (3.24a)
Tis® J

1 ]
E*(o)= ‘Yns*aj §,(x,)sinax,dx, (3.24b)
0




Substituting eqns(3.24a,b) into eqn(3.9b) respectively and applying

eqns(3.17a,b), one can derive:
a t oo
7“.[.:1 %%dt + J:, [2y,A(c)cosh(wyoxy) + 2Y;C(o)cosh(wyoxy)]odo

1=
=_’—‘(—%§E>yﬁ‘-’éﬂ‘2pl(xl) (3.252)

714*j . %ﬁ%d‘ + J: [2y,*A*(0)cosh(w, *oixy) + 21g*C*(@)cosh(wy*oxy)]adar
)

T(1-VxyVyx)
=- -—Z—Exy&ﬂ—pz(x,) (3.25b)
where y; and yj* are given in Appendix B.
Substituting eqns (3.24a b) into eqns(3.15a,b), one has:

wﬂ’) J j sma:dt[y Wiloy/Bs . y;Iie-twslory/Bsjcosoux,dat
2Ex A "2
+m j: [2y,A(e)cosh(w,0x,) + 2Y4C(o)cosh(wsoux;)]acosoydar  by<y<b, (3.262)

n e [T twiloy/Bs - e-Iwaloey/Bslsi
Ec'};;p.,(y) = xl.xp.i J J.o Yis sinotdty,, [e"W1'0Y, Bs - e-Iwslacy. Bs]smaxlda

+31.‘511{I Jo [2y,A(o))sinh(w;0x,) + 27,0C(@)sinh(w;0xp)]asinayda  by<y<b, (3.26b)

Applying eqns(A.5a,b), eqns(3.26a,b) can be further reduced to:

® 'Yn H,-t 1dt
2713 1,(_\1'_1_'2)_ (Hl t) L%!X)_ (Hl-t)z

+ff'.3., J: [2Y,A(c)cosh(w; 0x,) + 2Y4C(0)cosh(w;0ix;)Jacosoryda
1=
X ;EXV )PS(Y) b,<y<b, (3.26a%)

and




twly Iwaly

Y119: (1) Bs Bs
a1 - 1dt
J: 213 glwé, |2¥)2+(Hl-t)2 SIVEl¥)2+(I-I,-t)2
[ s -

+hm [ 129, (osinh(w,00,)+ 21 Closinh(wsoxposineydo
X~
L
= ""'ZnyP4()') b1<y<b2 (3.26b%)

Applying eqns(3.14a,b), (3.13a,b) and (3.21a,b,c,d), one obtains:
A(o)sinh(w,0H,) + C(or)sinh(ws0H,)

+ A¥(o))sinh(wy*oH,) + C*(a)sinh(wy*oH,) = R;(c) (3.27a)
B,A(c)cosh(w,oH,) + BsC(ou)cosh(w;0H,)
- B;*A¥(a)cosh(wy*oHy) - Bg*C*(0)cosh(ws*odH,) = Ry(00) (3.27b)
[yaA(a)cosh(wlaH,) + 'Y4C(a)cosh(w3aH,)
— A Ys* A¥(o)cosh(wy*aH,) - A1 *C* (c)cosh(ws*oH,) ] = Ry(ct) (3.27¢)

[YoA(c)sinh(w,oH,) + ¥,0C(0)sinh(w;oH;)

+ A, Yo* A*(o))sinh(wy *ot) + AY10*C*(ar)sinh(ws*oHy)]o = R, (o) (3.27d)
where R;(a0), Ry(a), R;(ar) and Ry(x) are given in Appendix A.

Solving eqns(3.27abcd) for A(a),C(cx), A*(ar) and C*(cv), we have:

1 R R R R,
A(o) =cosh(colocHl)Jl fzg)gl(a) +—"—hf($) 1) +—3—mf($) (@) + f(g;) n,(a)] (3.282)

1 Ry (o) Rq(0) ()
C(o) = cosh(o)saHl)l ft(a) g,(0) + Ef?(;')_hz(a) + _fz'a'—)'mz(a) + 'I%(E)_nz(a)] (3.28b)

1 R R R R
A¥() = cosh(e,* ali)ll f‘(f;)g3(a) + ’fﬁ(ao;_)hg(a) + —f%%ms(a) + —f‘('((gl%(a)] (3.28¢c)

1 ~_Ry(o) R, (o) R, (o) R, (0)
CHO) = o (@ ). f](oc) g,(0) + -f’(‘&)—h,,(a) + —éaym(a) + —fz';)'m(a)] (3.284d)

where f(ar), gj(o), hj(a), mj(o) and nj(x) (i=1,2,3,4) are given in Appendix C.
Substituting (3.28a,b,c,d) into (3.25a,b) and (3.26a*,b*):




lz
1
; r [-t-_-i—lq.n[(u(xl,t)](pl(t)dt +J K5 (x,,)¢,(t)dt
- r)

-

b, by
+ J K 3(x.)¢s(t)dt + j K (x4 (Ddt
b by

_ gl—vx;[v;m) <.<a
= 2714Ey 1(x1) “8<X1<q;

)
’ ' , 1
K, (x2,0)9,(D)dt +;‘-J' [—t‘:‘z + K5 (%5,0)]¢,(0)dt

b, b,
+ J K,3(x5,0)¢5(D)dt +J‘ K, (%2.0)0,(t)dt

b by
A=v* V¥ vx)
== T P -8,<Xp<8,
2Y14*Ey
2 ,
rKSI(Yat)q)l(t)dt + J' Kap(y,0)¢,(t)dt
* 2

by b,
+ J. K3,'(y,0)¢()dt  + j K;,'(y,0)0,(t)dt

by b
1._
=( sz::; )Pa()’) b1<y<b2
82
rKu(y,t)¢1(t)dt +j Ko (y,0)¢,(1)dt
-2 2

b, b,
+ j K3'(y,0)95(0dt + J. K, '(y.0)04(t)dt
by by

(3.29a)

(3.29b)

(3.29¢)




27
= 35—y b,<y<b, (3.294)
xy
where
K (xp.t) = ;—1-; j: [k, (x,,00)e- % OB/ w4 Ky (x,,0)e-%EH-OBsW3 1dor
14
K (xpt) = —’Y-l;j: [k;(x,,a)c‘a(Hz't)ﬂs*/'Wn*' + k4(x,,a)c‘“mz't)ﬁs*ﬂws*llda
14
Kys(xpt) = &:75]: 3, (x,,00) + J5(x,,00) Jcosautdor
Ky (Xpt) = —L-j" [75(x,,0) + J(x,,00) Isinoutdor (3.30abcd)
Ky (x5t) = r [ks(x,, (!)c'a(Hl't)BS/lel + kg(x,, a)e'a(fil't)ﬁs/"”s' Jda
Ky (k,t) = j [y 0y, 00 OB Wy ¥ ke, 0nye-0CHOBs*/ws* 1dor
Kpy(Xpst) = j [Tg(xp,08) + J(%,,x) Jcosautdor
K, (xp.0) = j [T (kpy08) + Jy(x,,00) Jsinodor (3.31abed)
H]'t I]_‘_ H]'t 1
Kay(y:t) =5 % +16 g
31 27 ¥ lg_%]_lﬂ__*.(Hl )2 2 12 LWJ‘SM__*_(HI_t)z
+ lim ?Ejo [k (%, 006X EDB Wi 1k o(y,x,, 00 ¢ Ey- DB Wsl 1dor
X,
K32(y,t) = lim lr [kll(y,xl,a)e-a(HZ-t)Bs*/lwl*l + klz(y,xl,a)e-a(HZ-t)Bs*llw3*l ]da
ch(w 0x,) h(w,0x,)
Ky = lim L (o 200 * fh(—wﬁa—H‘;Jw(y o) Jeosatdar
h(w, 0 h(w. .
Ko/ 09 = lim ] [g—h(%-‘;H’i‘l)Ju(y o) + ’CE(LJEI'{%I&(Y“) Jsinotd  (3.32abed)
Iwly Ialy

Koyt = Yqul | Es - ?5 1

+ hn:. '11('..‘[: [kla()',xna)e'“(Hl't)BJIWl' + Ky (g%, 00e “Hit) Be/tws! 1dor
X,




Kigyt) = lim 'l‘r [y (%, )e O OB W M 4 i (3%, 000 DBs* W3 1dor

h
Kys'(t) =lim nj -s-}ﬂ‘—'“‘lln(. o) + s—("’39‘-’5‘11,4@ ) Jcosotdo

ch(w,oH,) ch(w,oH,)
b h
K00 = Im o[t fé‘%%xﬁ%lw(y o) + i'ﬁ%z—;%]w(y o)lsinosde  (3.33abed)

The derivation of the terms kj and Jj (i=1 to 16) are given in Appendix C.

N'otc that for t = y the integrals (3.32c,d) and (3.33c,d) are divergent. These
divergent parts must be studied and separated by analyzing the asymptotic behavior of
the intégrands. |

After separating the singular parts in (3.32¢,d) and (3.33c,d), eqns(3.29¢,d) are
finally reduced to:

b,

| L]
f K, (y,t)¢(t)dt + J K3 (y,0)¢,(t)dt + %‘4’3()’) + J. Kas(y,)5(t)dt
4 b

-az

b, 1 b,
) _29'215 . t-y t+y)q"‘(‘)dt+ -[,, K4(y,0)04(0)dt

1=
=(—\;’%m2ps(y) b,<y<b, (3.29c*)

X

L)
rKu(YJ)qh(t)dt +J K (y,)¢,(t)dt +&‘J‘ (—“+t+y)¢3(t)dt
!

.az

b, b,
+ J K3(y:)95(t)dt - 2214)4()’) + j K4 (y,1)0,(D)dt

by b
1
= G b,<y<b, (3.29d%)

where p;, Pp P; and p; and Kas(3:1), Kay(y,t), Kys(y,t) and Ky (y,t) are defined in
Appendix D The additional single-valueness conditions for each crack configuration will
be discussed later.




3.1.3 Asymptotic Analysis of the kernels
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Depending on the crack geometries, some or all of the kemels might be

unbounded as & —» oo, The unbounded kemels will affect the values of singularities at the

crack tips. Therefore an asymptotic analysis is necessary to determine these singularities.

Generally a kernel can be expressed as:

Kjj=Kijjs +Kjjf  (,j=1,234)
where Kijjs is the unbounded part and Kjje is the bounded part.

(3.34)

Let k;, (x;,00) (i=1-8) be the asymptotic part of k;(x,,00), when o — o, then we

have:

KllS(xbt) J [kl- (xl,a)e'“(ﬂr‘)ﬂsﬂwll + k2- (xl,a)e'“mr’t)ﬁsﬂw;l ]da

Yol

—ol(H, 0B M Hytwl] g o
WYB'Yulm

jo cosh(w;0x,)e

+ Yo rcosh(wsax,)e

-u[(H“t)ﬁ; “w‘HHlIw:l]da
Yy Yieheo *°

+ Yira *

j cosh(wlaxl)e‘“{(ﬂx-t)ﬂsI'W:HHJW,U do
Y3 Yrehso

jo cosh(w3axl)¢'“[(ﬂx-t)ﬁ, 1w B il 4o

(Hl - t)Bs /lwl |+H‘ 'Wl l

(Hl —t)Bs /IWI I‘l"Hl |W3 l

1
+ —)
T

(Hl —t)Bs /lW3 |+H1 |W1 |

kﬁ [(H, - t)Bs /tw; 1 +H, w112 = (wix,)*

. 7»3 (H, ~ s /1w 1 Hy s |
S{CH, — 0)Bs /1w 1+ H, w3l = (wyx,)?

(3.35)
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Similarly one can derive:

(H, - t)Bs/iw; 1+H, lw,|
Ks(xpt) = 7\93 [(H, - t)B;/lw; 1+H, lw, ] = (w,x,)

_.;\9 (H, - )Bs/Iw; 1+H, lw,|
4[(H —t)B5/Iw; I+H, 1w, P = (w,x,)?

_% (H, - t)B; /Iw;|+H, lw,|
S TCH, — )B; /1w 1+H, Iw, 1T — (w,x,)?

1 (H, —t)Bs/Iw;1+H, Iw;|
L s [(H, - )B5/Iw; 1+H, lw, I - (W3x,)? (3.36)

L~ OBs/lw, 1+H, Iw;]
[(H, —t)ﬁs/lw,|+H Iw; 11 = (w;x,)?

Kpis(xat) = 7‘101

1, (H, -t)Bs/lw,1+H,Iw}]
® C2{(H, - 0)B/lw, I+H, 1w 1 —(Wix,)?

+

1, (H, —O)Bs/iw,|+H, lw;|
% B[(H, - 1)Bs/Iwy+H, w112 - (w;x,)?

+

1 (H, —t)Bs /Iw, |1+H, Iw|
* T 1104 [(Hl - t)BS /l W3|+H2|W;|]2 — (w;xz )2 (3.37)

, —)Bs/iw; 1 +H, Iw; |
[(H,- t)BS/lw1|+H lw 11> - (w;x,)?

Kaas(x:t) = 7&109

+ 1 (H, —t)Bs/Iw;1+H, 1w,
. O[(H, - 0B; /1w +H, W I — (w3x, )
+1 (H, —t)B; /lw;1+H,Iw;!

x T(H, - 0B /Iws+H, w2 - (WX, )*

1 (H, —t)B;/Iw,1+H,|w;] .
' 7””2[(1{, ~1)B: /lws14+H, lw3 112 — (wix, )? (3.37)

The asymptotic expressions for K (y,t), Kj(y.t), Ky(y,t) and Kyy(y,t) are

obtained as follow:
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. Hyt Yo, Het
K,,s(y.t) = 27137;[ Y‘(Iw |}Q2+(H 2 +% 12)( 3IY)2
B2

Bz (Hl )2

. ) -a(H,~t)Bs 1w ~a(H; 1) fiwy
+lm =[” [k, (yix, 00 F B 4 kg (rxg00e ™ Bl 130,
x,-H, I

g ot syt —y
" 2ym 'LEB"—YM(H;%)’ 12 QVB"-YLHHI-O’

+ Im 73181 +Y4xn “cos(ay)c'a[(ﬂl"‘)p!,‘wlk'ml'xl’wlﬂda
ERC T 4 (T R

+ lim st + 74)'84 J‘ -a[(Hy~1)Bg vy H-(H,; -x; )lwy ] do
x,~H, WB}’W
1 Hl-t m H] -t

27137cl ’YIQB‘-IYL +(H,-t)? T IZIL%M—HH,-t)z

cos(ay)e

(H, —t)Bs/lw,l (H, - t)Bs /1w,
+Ps [(Hl _ t)Bs/IWJ]z + yz 3 [(Hl —t)BS/IW3|]2 +y2 (3.38)
_ (H, - t)B5/Iw; (H, - t)Bs/lw,|
Kys(yst) = Py [H, —Op./Iw. P+ + Py AT (3.39)
M Iwaly
Bs 1
Ky = %E;[M’ o L R
Bs? r Bs?
Y - P10 Y (3.40)

PO L, — OB, /W, P +y® PO, ) I, I+

- y . y
K425(Y’t) - pll [(Hz _ t)B;/IW;l]z + yz p12 [(H2 - t)B;/lW;I]z + y2 (3'41)

Let J;. (x;,00) (i= 1-8) be the asymptotic parts of Ji(x,00), as & —» oo, then we
have:
1 oo
Kias(xp,t) = 71475J° ;. (x40 + T, (x;,0) Jcosatdo

- Y7 Mg +Ag +As5)
TY1ehg

fo cos(oit)e ™ H=H) dg
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+ Ys(he +Ag +A
2 O W

e) J: cos(at)e ™ gq,

w, (H, -x,) w,(H, -x,)
[w,(H,=x )P +1* " H[wy(H, —x,)I +1t*

= P13 (3.42)

Using the same technique we can derive:

t t
[w,(H, —x,)]* +1* * p16[w3 (H,-x,)P +¢*

Kis(Xpt) = pys

(3.43)

w, (H, —x,) w;(H, —x,)
W (H, =%, P +t* " B{wi(H, - x,)P +1*

Koas(xa:t) =py7 (3.44)

t
[wi(H, —x,))* +1

Kaus(at) = Pyo + P20 (3.45)

t
[w; (H, —x,)1* +t
The coefficients Aj (i=85-112) and p; (j=5-20) are given in Appendix B.
The asymptotic analysis for kernel Ki,'(y,t), K3,'(y.t), Ky3'(y,t) and K, '(y,t) is given in
Appendix D.
3.1.4 Normalization of the singular integral equations
Using the following transformation formulae:
X,=q,T, t=4;S, X,=a,T, 1=a,8. -1<r<1, -1<ss<1
y= %‘(bz-bl)r + %(b2+bl), t= 'l-(bz-b )s+ l(bz+b,).

then t+y= %(bz-bl)[s+r+bo), by= "((t;!:%b;)' -1<r<1, -1<s<1

Substituting above into the four singular integral equations, we obtain:

1 1 ° ° 1 ° °
— [ makh @9l (s + [,k (n )03 (s

by—by (i .. A=V, v,)
+=2 2 [ s>¢3(s>ds+———l [ ke ms)05(s)ds = Wp,() (3.463)

[ aks o (5,5)02 (s)ds +— j [ —+ 72,5, (1,5)167 ()ds
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__Q=vyvy)
jk (r, )93 (s)ds = W’” (3.46b)

b, - b,

j K5, (7,5)05 (s)ds + =2

[ ka0 + [ 2,5 s 6)ds + EL 4360 +.‘2%PL [ ks @s3)ds

P 1 "'bl 1. o o _l—V v o
e Kot smb 0500+ [ G rogEds =—2==pi) (3460
[ aks @ onrs)ds+ [ a ke, s)]¢2(s)ds+ l(s 1r+s+r+b Y3 (s)ds

b, ; b, 'C, k3, (r,5)03 (s)ds — p—z‘¢: )+ ﬁ_;ﬁ fl kS, (r,s)03(s)ds = Eé_—p‘ 2(@) (3.46d)

where superscript "o" is used to denote the normalized quantities.
For orthotropic materials, the dominant parts of eqns (3.46c) and (3.46d) are
coupled. In order to solve the singular integral equations numerically, it is necessary to

decouple these dominant parts of eqns (3.46¢) and (3.46d). Using the technique described

in [22], first let:
S
4 2

Pl p2 EZ.'

P 0 - 0 -
and A= 2 ’ B= p 2 , B= L 21l

0 -4 _Fa. 3

) 21 0 21 0
1-v_v

C= ak; aky ’ K=bz“bl kga ky ’ P= ZIlzx Ps .
aky aky 2 |kiu ki

then eqns (3.46¢) and (3.46d) are combined into:

Ad+— L j +[Cods+ K¢ds=P (3.47)

S—r mj-1s+r+b




Multiplying both sides of eqn (3.47) by A-1 gives:

1 A™Béds , 1 ¢ A'B'¢ds | 1, 1 4
2 +—[ 222 L 'A'COds+| A'Keds=A"'P  (3.48
w1 s-r 1tiJ-l s+r+b, L L 6.4

¢+

0o -il 0o -ife
Let D=A"B= Pil D=AlB= P
il o il 9
P4 P4
then the eigenvalues J, , of D can be determined from:
D-ul=0 (3.49)
s PaPs PPy 1
giving: W -2 =0-p =i’—L=:i:—-
PiPs " PiPs ¢
Now let R be a square matrix such that:
DR =RA | (3.50)
-1
where: A= ¢ 0_,
| 0
1 i
then we have R= ™ | where n =L, and n, = B
i g P P4
N

Introducing : ¢ =Ry, where = [i’o] , then eqn (3.48) is reduced to:

4

=1 -1y
f L[ Avds 1 RIATE Ry

: : +[ R7A"Cods
R s—-r Wl s+r+b, -1

+f R1A"K¢ds =R*A7P (3.51)

a,c,(r,s) a,c,(r, s)]

h RA7C=
where ¢ [alcs(r,s) a,c,(r,s)
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a, (=% k3 +lk_1 ) 32(51_+:’¥;&F}_-)
= pl p4 (%) Ps (352)
(_._J. _iky __z.) a,(~ ko _iky _"J.L)
Pe P YT Ps P

RVATKR =220 [kru.s) k;(r,s>]

2 lki(rs) ki(r,s)

o :4)+ ﬂz \l—i k:d 43)+1JT]:( ;3+E?£,)
bz =b P: dm n; P Pl 'ﬂz Pa M P Pa

2 ("2k° ko) 112(“”+“3“) (- Xa) ‘\[TT:"+JE&>

N Ps Ps Pr Ps P Pa n P M, Ps
(3.53)
| PR
m m
and R—l A-l =[ . 1 2 ] - pl p1p3p4 (3. 5 4)
—im, -m,] | . [ _Ps _1
VPPpe P

Finally eqns (3.46¢) and (3.46d) are reduced to:

-1
\y;’(r)+%5- J:\v;(s)"s ""L‘“() +j 2,0,(, 50 E)ds + || 20,533 (5)ds

RO (s)ds+P-L——’- [ ksmovses

I-v v, ° ) 1
=m, 21;’ % py (1) +im, o P (r) (3.55)
x xy

] - o ds - o ds (] (]
V() —%l':]’_ll\l’.g (s)-s—_-r“' %t—-[-ll% (s) strib, +J‘_1l a,C,(r,s)0; (s)ds + j_il a,C,(r,5)p3(s)ds

b,~b, (! b,—b
T [ e 222 Keavieds
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1—-v! Vi 1
p3(0)—m, ——p,(r) (3.56)
2G,,

=g

Note that the functions y;(r) and y;(r) are related by the following relations:

V() =-;:[¢;’ (r)—l\/:" < (1)] (3.57a)
vi) =%{—1\/2: $)+450)]= ‘\Pn: V0 (3.57b)
If both materials are isotropic, it is found that -‘% = 1, and the above relations
reduce to:
THOREICHOREIO) (3.57a%)
Vi) = 2E50) + 6501 = V0 (3.57b%)

Now to expressing eqns (3.46a,b) also in terms of y;(r) and y;(r), we have:

= L[—+1tak (=905 ()ds + [ 2,k (1.5)05()ds

°(s)ds + Try: (s)1ds = ﬁz‘- () (3.46a%)

j_‘i 8,3, (, )07 ()ds +—11-:-£1[-;1_—;+1ta2k§2 (r,9)02()ds

5=b e Ty (s)lds = LYV o
=2 [ [Tz\ys(s)ds+Tz\|!3(s)]ds——2mT—pz

where T = k5 +i ,ﬂlk;; Ty=k3 - ’“z K,
™ ,
T, = k3 +i J%k; and T2=k3-i ,-T-‘nf (3.58abcd)

(r) (3.46b%)
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3.1.5 Determination of singularities for different crack geometry

The stress singularity at the crack tip varies with the crack geometry.
a) Embedded cracks ( Ja,|< H;, |a,l< H;, and b;> 0)

For embedded cracks, the crack density functions are of the following forms:

o(ry = FL (D) ORI 1 1))
BO=Gora-r O drra-o
v;’(t)=——5-°9—)— HOE E® (3.59abcd)

a+oea-op ST a—oF

where F’(t) (i=1,2,3,4) are bounded at crack tips. and because of symmetry o,=f, and
o=,

Substituting eqns (3.59a,b,c,d) into eqns (3.29a,b,c,d) and using the following
formula [33]: '

P z:q)“(t)i ==_l_ 2y E (1)
V. (@)= u-L t—z T Lx (t—2,) (z,— ) (t—2)
__FE(z)cot(na,) _ F, (z,)cot(nf,) G 3.60
I Y Oy e e a® G0
where Gy (z) is bounded at the crack tips.
Then eqns (3.29a,b,c,d) give:
Fo(~Dcot(nay) _ E(cot(may) _ _ (1=VxyVyy)
QPG @rQonn T oygy DO *bomdediems o GOD

B (=cot(na,) _ E(cot(no,) _  ®(A- Vi V)
)% (@ +1)*™ Q)2 (1-1)* 27;4E;

p,(r) + bounded terms  (3.62)

B@ T EDeot(roy)  Ed)coynp,)

A+0)=d-0® i = @QPA+n)® (2)“«(1—-r)%]

= m,p,(r) + im,p,(r) + bounded terms b, <y<b, (3.63)

E@ _ _¢' ECheouna,) FE®cound,),
A+n%d-nf i = @QPA+r)™ @)™ 1-1)
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= — im,p,4(r) - m,p,(r) + bounded terms b, <y<b, (3.64)
From eqns (3.61) and (3.62), it can be easily shown that:
o=P=t, o=p=a (3.65)
2 2

These are the known results for cracks perpendicular to the interface {23].

Similarly, from eqns (3.63) and (3.64) we can derive:

: : ,PIP4 P ’P:P4

cot(mor,) =—i = —i_| ==, cot(nfB,) =iC= i_j——
% : P2Ps By =it P2Ps
e+ |PiPs : PPy

cot(noy) = il= i /———, cot(nf) =—il=—1i ’———
=1 PaPs B P2Ps

Using the formula:
cot (z) = - log X1 (3.66)
21 z—1
We then have:
=1, i0, By= L. i®
a3 2 L4 3 2 ’
1 . 1 .
1 1+
h o0 =—Ilog(—=>
where . og(l_c)

Eqns (3.67a-d) are of the same form as those obtained for interface cracks between
two isotropic dissimilar nicdia [24-29].
b) Matrix crack touching the interface(a;=H,;,b,>0 and a,<H,)

In this case, as x, and t approach to H,, the kernel k;,(x,,t) becomes unbounded.
Let k;,, (r,s) be the normalized kernel of k;;5(x,,t), that is:

H, (1~ 5)Bs /1w, 1+H, lw, |

ku; (I', S) = A’85 [Hl (1 - S)BS /I W, H"Hl |wl|]2 - Hf ("vlr)2
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.y H, (1-5s)B,/Iw,|+H,lw,|
T TBIH, (1-5)Bs /w1 H, w112 - Hi (wyr)?

Y H, (1-5)Bs/Iw,l+H,lw,l
81 [H, (1-5)Bs /lw, 1+H, Iw, |1 =H} (w;r)*

Y H, (1-5)Bs /1w, |1+H, Iw,!
88 [H, (1 - 5)Bs /Iw; 1+ H, Iw,|]* — Hj (wyr)?

_lsslwﬂ[ 1 | 1 ]
= : 2
2 H1<1-s+(1+r)"g") H,a-s+(1-r)'-‘-"[-;'—)

5 s
l“lwll[ 1 N 1 ]
2[35 Hl(l—s-i-(l-{-r)'—vﬁﬁu—“ls—l) H1(1"S+(l—r)'w“;|w3')

s s
lnlw3l[ 1 . 1 ]
s Hl(l—s+(1+r)'w‘[;'w") Hl(l—s+(1—r)lwxélwal)

3 5
Aglw,l 1 1

[ + ] (3.68)
2Bs Hl(l—s+(l+r)|w3|2 I,

H,(1-s+(1-
Bs) (ims+=nTg,

Substituting eqn(3.68) into eqn(3.29a) and moving the bounded terms to the right hand

side of the equation, we have:

)

1 1 Agslw, | 1 1
G T w,E. TAR
5 H(-s+(1+r)—>—) H/(1-s+(1-1—73>)
Bs Bs
+nHl_7:§_§lw,l[ 1 + 1

]
2B5 H;(l—s+(1+r)!!v—‘-ll3l—%-!) H,(1-s+(1-1) lwl"WS')

s Bs




40

k,.,lw,l[ 1 . 1 |
2P H(l-s+(1+r)'w‘é'“") H,(1-s+(1- r)—i—-—-'wl';w’)
. H A 5

Aeg I W, 1 | 1 .
+H, =8 + 5—11¢7 (s)ds
" 2B, H(l—s+(1+r)'—“—"3—'z-) H,(l—s+(1—r)'w")

Bs Bs

=17V o )+ bounded terms (3.69)
2714Ey

Applying eqns (3.59a) and (3.60) to (3.69), and setting o, =B,=Y, we have:

E(=Dcot(ny) _ Ecot(my) | Ay Iwyl F°(1) | .
QA+ @d-n' 2 B, 1) (-1
2)" sin(ry)| =+ B
5

x Ay Wl F°(1) 1 1,
e (-1
2 Bs 2" sinCay )[lwlllwal]' 1+1)'  (1-1)

+

A F°(1) 1 1
2 B [CALAl (1+r)’+(1—r)’
* (2)"sin(ny )[ ; 3}
S

]

Jhalwl  BO 1 1

2T+ 1-1)!
2 Bs ) sin (m)[_vg_s ] (+r)' (-1
s

=179V ) 1)+ bounded terms (3.70)

214y

Multiplying both sides of eqn (3.70) by (1+1)Y and letting r — -1, we have:
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twyl 1 w1
-2c¢ + L +A, —
sl e “ Bs [ﬁ]’ “ Bs [lellw,l]'
Bs Bs a7
lwyl 1 lwyl 1 ‘
+Ag 7+ Ay +=0
Bs [lw,uw,l] Bs [ﬁ]
Bs Bs

This result is the same as that given in [23].
¢) H-shaped cracks (aj=Hj, by=0 and a5>0)
As a,— H, and b,— 0, the transverse crack intersects with the interface crack and the

kernels K, K3, K;4, K3, and K; become unbounded. Let o be the index of singularity

at the point of intersection, then we have:

R
Substituting above expressions into eqns (3.29a,c,d), we have:
1% 1 Agslw,l 1 1
- —+ 7 [ =t 1
Ty t—X 28, (Hx"t‘*‘mx“‘xx)lv[;'l ) (- t+(Hl—x1)h;sl )
7\, Agslwil 1 1
"B, | CACANS CAKAR
5 (Hl—t+(H1+x1) ) (Hl—t+(H|"x1) B )
, s s
X oWl 1 1
T8, A CACA]
5 (Hl-t"'(Hl 1) ) (Hx"'t'*'(H ) )
Bs Bs
Aglwil 1 1 F ()
+7 [ 7+ } 5 dt
R L S L S

Bs Bs
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by Iw,i(H, - x,) lw,I(H, —x,) E,(t)
+ 1 1 1 3 1 1 3 d
Jo [Py lw, 2 (H, = x )+ iw,l (H,—x,)2+t2]t“(bz-—t)” :
b, It t E,(t)
+ +
k [pis WP, - +0 P TwyP (=% + T € (b, — )
1-vyyV
=—2-7-;‘Z§x¥xpl(r) + bounded terms (3.72)
w1 H, -t v H-t
J { (N + T
g, 2
H 2137 Jw,lzy +(H, ~1)? Y12 Iw,lzy +(H, ~t)?
) 55
H, -0 (H, - 0B
lw,l |W3| F](t)
+ dt
G PR R
fw, P Iw,
+1g (y)+-‘31jb’(—1-+—1-)-5‘—(—9——~ t
2 7 amdy Tty T ey (b, — 1)
1 Vy Ve (y) + bounded terms (3.73)
= 2E, Pty :
Iw,ly Iw,ly
IHI 2‘{11 : 2B, —s 2Bs ]
-, T lw,l Iw,|
Y13 ngy +(Hl"t)2 _“!S_BZ'L"'(HI—':)z
5
y y E()
+ dt
+ p9 (H "t)2B2 +y2 plO (Hl _t)ZBg +y2 (Hf _t2)cl
Iw, P lw,*
Ps I j"‘ 1,1, EB®
Y2 8O ), Gy e E, R
=3 é p.(y) +  bounded terms (3.74)

xy
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Multiplying both sides of eqns (3.72-74) by t* and letting t —0, we then have the
following three algebraic equations for Fy(H,), F;(0) and F,(0) with o yet to be

determined.

cot(mo) __g_ Iw,l 1 + Ag Iwyl 1

RS2 B sy 2 P QR s e
5 ]

(-

+ Ag lw,l 1 Ag Iwyl 1

+
2 Bs oy sno™ ™ e 2 Bs op )% sin(ropp A

Bs Bs

JFy(H,)

X P, Pu T Pis . Pis
5O o @ =0 3.75
+2b“cos< % T )+2b§sin(n; i, T O (3.752)

{______[ ‘Yl BS )a YZYII(BS ) ]
wyl Yo |

n[pslw"(B’ ¥ 4p "”"(Bs rN——L R + £ R0

Bs B lwsl CH,)" sm(ltﬁ)
b 1 =
+ b [cot(na)+sin(na)]F4(0) 0 (3.75b)
¢ In Bs " Bs \a Iwyl Bs « Iwsl Bs \a 1 F
{2713 [(Iw ) (tw3l) 1+ wlp, B (Iw,l) +pPy0 B, (lw3) ]}(ZH) cos(———) 1(Hy)
+ %l[—cot(mw = O+ +2 F4(0) 0 (3.75¢)

Since F,(H,), F3(0) and F,(0) are generally assumed nonzero, therefore the

characteristic equation associated with eqns (3.75abc) has to be zero. Numerical

calculations indicate that o is 0 as expected.




3.1.6 Numerical solutions

In this section, numerical procedures are outlined for solving the singular integral
equations for different crack configurations as discussed in the previous section. The goal
is to determine the stress intensity factors and the strain energy release rates for each crack
configuration, at the crack tips.
3.1.6.1 Embedded cracks

Figure 3.1 shows the embedded crack geometry. In this case, the normalized

singular integral equations take the following form as derived earlier in section 3.1.4:

1 1 1 o (] 1 o (-]
— [, [+ a5, 917 (5)ds +[ 8k} (1,903 (s)ds

- e 1"'
+ b, b! J‘l [Tl\v;(s)ds + Ty, (s)lds = _lfl.y_yi‘_pf(r) (3.763)
2 B 2714Ey

[ aks (563 (s)ds +-11~t- fl[;—i—r +a kS (r, )13 (5)ds

b,—b, ft o = —o 1=V, Vs o
o [, yieds + Tz\|I3(S)]ds=-W"E;"-p2_(r) (3.76b)

+j a,c,(r, )7 (s)ds + j a,c, (r,s)p5 (s)ds

0 g ") _ds__.g:. .
v+ i L‘l’s(s)s_r T f-l“’4( )s+ +b,

j K2 (1, WS (8)ds + 2 j k3 (r,s)y3(s)ds

l1-v v
2E,

1
G P (r) (3.76¢)

xy

=m £p, (1) +im, ——

-] - L] ds - L]
w4(r)—%j_’1\y4(s);"cn—f_ll‘l’s() vy +j 8,C5(r,5)0; (s)ds+j 8,C, (r,5)3(s)ds

+2=hy j K3 (r,5)y3 (s)ds +—2—L 2 j k3 (r,s)y5 (s)ds

v 1
——2—§:&p3(r) -m, EG_p‘ (r) (3.76d)

xy




45

All the quantities are defined in section 3.1.4. Among the four equations given
above, only three are independent since W3 (r) and yi(r) are related through eqn (3.57b).
The first three will be used.

Equations (3.76a) and (3.76b) are Fredholm equations of first kind. Thus Lobatto-
Chebyshev integration formula is used. Equation (3.76¢) is a Fredholm equation of the

second kind, and thus a Lobatto-Jacobi quadrature integration formula is used.

Let 9= 70, 010= 7

K (s)
A+s)*(-s

N
and  Y3()= = 1-5)°1+sP Y, dPP(s)
1=0

here a=-B;, B=-05  E(s) =i dPe¥(s) and  dy=(dg+idy)
1=0

Using the methods described in [30,37], we have:

n

¥ (et

k=1 T S —-

+ ma, Ky (81K (5) + 3, Wi Kp (50 F (5

B S 3 I WABE,) + T Wal (5 = S0 00)
= o YJ ¥3 2714E
(3.77a)
3 (8 WeKS, (s (5,) ok f— — + K (sl (5)
k=l T S —§
l"——LZ 2 [Tyrs,) W, PP (s,) + Tor,s,) Wy PU 0 (5,)] = Ve Vn 0e)
=0 A 27,.E,
(3.77b)

W,d,B# ’(s) -1 Wydi PP (s,;)
£33 B 6 3 3 Wadn

Tl 10 = T 1= = S”- +r,i + bo

+ 2 [a,6,(Ts ) F (5,) + 8,0, (s Fy ()] Wy

k=]
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f 2O S W ABEP(s,) + Ty, ) Wdi PP ]

2 I=0 j=i
I-v v . 1
=m, 2};’“ L P3(r¥i)+m2-{é:p4(rﬁ) (3.77¢c)
where Ty=k] (ryi,syj), Ty = \/E’- k> (r,; ,s”) and
w=1l_%_ (k=1,n)
k" 2n- ’
W, = (k=2,.0-1)
n_ .
n(k-1) -
8 = cos[——= " ] (k=1,..n)
o B2i=1) i=1,.n-
I; = cos| 2(-1) ] i=1,.n-1)
2 NIT(R+DP T (0 + N+2) .
"= T@+N+D@ipeN+3) TP 61=0)
_ 2PN (o+DPTE+N+2) . .
%= TiN+2JT@rBiN+3) O+ % 03 =R+D)
a4+l
_2%ML(a+N+2)LB+N+2) 1 Gi=1.3)

B (N+D(N+ T+ B+ N+3) [BEH(s,)F
the abscissa s,; are the roots of the following equation:
(1- s, AR *(s,) = 0
and the collocation points r,; satisfies the equation of the N-th order Jacobi polynomial:
PO () =0
W,; and P (s (=0,..N) are the complex conjugates of W,; and ped (sy;) respectively.
At the interface, since & and B are complex numbers, the weight Wy, the abscissa
s,; and the collocation point r,; will also be complex. The technique of using the complex

weight, abscissa and the collocation points are not new. One can refer to [36-39].
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Note that generally d, (¢ = 0,..N) are complex numbers, and equation (3.77c)
actually provides two sets of equations (for the real and imaginary parts). Together,
equations (3.77a-c) provide 2(n-1)+2(N) equations. Since there are 2(n)+2(N+1)
unknowns be determined, the following additional equations are required to insure the

single valueness of the solution:
1 1 1
[[ #eds=0, [, ¢3(ds=0 and [ weds=0

These in turn provide four additional linear equations:

Y WE@)=0

k=1

3 WE®)=0

k=1
i Z WP (s,) =0 (3.78abcd)
1=0 I
Note also that the last expression provides two sets of equations
Once the values of E’(t,), F(t) (k=1,..n) and d; = d; + id, ( = 0,...N) are
determined, the stress intensity factors can easily be calculated (see appendix E for details
of the derivation):
Defining the stress intensity factors as follow:

for transverse crack in matrix and fiber

at Xl = al: k(al) = {.lj;?‘]‘ ’IZ(XI _al) G‘y(xl,O)
at x, = a,: k(a)) = }J_{I‘l 1/2(x2 -a,) czy(xz,O)
for interface cracks:
1 1 ‘ ) 1-v_v
aty=b,; ———ky(b)) -1 Py T2k, (by)

Ps 2G,, pipps  2E, ‘
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)™ Byt 1 ‘ 1-v
-hm(b y)'(y—b,) [ 320 Oy (Hypy) - VP:P:P; ZB‘ L0y (Hpy) 1
1 P 1 VaVe,
aty=>b,. )
o gl ] p, l-v v,
= le(b Y) (y bz) [ 3 ZG lxy(HpY) Vplp2p3 2Ex Glu(Hl’Y)]

After some lengthy calculations (see Appendix E), we have

—. 2714Eys/; 0 _ 2Y,E,
k(a,) = —-——-—(l_vvvn)l‘,(l), k(a,) = ———(1_ ) E(1) (3.79ab)
[p. 1-
Bch; kz(bl)’ivp?p 2EU‘ k) =V1-CECD (3.79¢)
3 xy 1P2P3
[p, 1-
126 kB -1 Voop ZVE" 2k =-y1-CE) (3.79d)
Ps 1P2P3

If the materials of both layers are isotropic, it can be shown numerically that

1 1 ’ P, 1-Vvyv,
P32G, PPy 2Ex

and eqns (3.79c¢,d) reduce to
k,(b,) - ik, (b;) =2G,,p; 1-¢? E(-1) (3.79¢*)
k®,) - ik,(b,) = -Znyp_,, 1-¢ F'(1) (3.79d%)

The strain energy release rate at the interface crack tip can be derived as follows:

AE _ 2n Jd-vev, 1 1 1
K+ —=X 3.80
AY Jl C,’ 2Ex P 2G,, ps 2 (.50

Again if both layers are made of isotropic materials, the above equation reduces to

AE  2r 1
Ay 1- £ 2G,

2+k2) (3.80%)
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It should be noted that when upper and lower interface cracks meet (that is b;=0),
eqns (3.76a-d) should be modified before proceeding to the numerical solution. First the
integral limits for interface cracks should be extended from (0, by) to (-b,, b,). Then, using

the following relations:
630 = ¢3(-1) 021 = - ¢3(-1)
Ki3()(i, t) = :Kij(xift) K“(Xi, t) = Ki4(Xi,'t) (i = 1»2)

Kj3(y’ t) = KjB(Y'-t) and Kj4()” t) = Kj4(y’°t) (i = 314)
eqns (3.76a-d) can be reduced to:

10 1 ° ° ° 0
;J‘_l [;:; +7a k], (r,5)1¢; (s)ds + .[-11 a,kp, (1,5)¢3(s)ds

b, ¢t . I 1~ o
¥ —;—j—l [Tyy3(s)ds + Tay,(s)lds = 2‘Y:E Zp, (1)

j a,kS, (r,5)0° (s)ds+—j [—+1ta2k°n(r,s)]¢2(s)ds

L] L] r
27.E P2 (1)

y

b. o — — 1
+ [, [Tys)ds + oy (s)lds =

-1
w;(r)+%u-,- fl\y;(s)si_s; + [ e, 535 (s + [ 2,0, (r,5)3(5)ds

bz 1 o o o B
+2 L [k; (r, $)W3 (s) + k3 (r,8) w5 ()1ds

lv
2E,

1
=m, =Py () +im, > 2, P+(1)

-
v [ w0+ a0+ [ e monsds

bZ 1 o o o o
+2 L [k3 (. s)y3 () + k3 (r,5) w5 (s)]ds

. l=-v v 1
=—1m1—5E——3-p3(r) ng(—}—m(r)

(3.81a)

(3.81b)

(3.81¢c)

(3.81d)
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The above numerical procedure and the single valuedness conditions can also be
applied to solve eqns (3.81a-c).
3.1.6.2 Matrix cracks touching the interface (a;=H,, b,;>0)

When matrix cracks touch the interface, the kemnel Ej(x;,t) becomes unbounded.
And the singular behavior at the crack tip changes. Now, redefining ¢7(s) as:
FQ

—s)

the power of singularity oy can be determined from eqn (3.71).

¢1()~

Since 7 is generally different than 0.5, in the numerical procedures described for
eqns (3.78a-c), we now use the Lobatto-Jacobi quadrature for integrals containing ¢;(s).

The rest of the definitions and numerical calculations in eqns (3.78a-c) remain the same.

The modified version takes the following form:

) {——[

—+72, K, (5,5 1B (5, )+ Wy 2 KG (55, B (5, 42, Wi K (5,80 B (5,))

k=l T L
1-
+—-*-2 S [Ty s, )W, dBP(s,) + Tilr 5,) Wi B2 (5,)] = 20 pier)
= = 2Y,E,

(3.82a)

2 {2, W, K3, (1,5, )E (s, ) +—VY¥-[

k=1 L

+ 78, K3, (1,51 (s)}

V.V
‘2 3 [Tyrs,) W, B (s,) + Talrys,) Wi PP s, )] = 202 01
= A 27,E,

(3.82b)

S 3 W6 g g WodiPr *(s)

™ 2 A Sy =Ty T2 = S+ +b,

+ 3 [8,008)F (5,) W + 2,0,(1;,8)FS (s )W, ]

k=1
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bz“b1 > (@ 8) 57 3 e
+ = Y Y [Talrs, )W PO (s,) + Tylryis, ) Wydi P (5]
=0 =l
1-v Vi, . 1
=m, 21;1 Ps(r,;)+im, '2G—WP4(1',;) (3.82¢)
where

.27 -Dra-y)r
W = Tara-ay 0P

k =1,n)

w 2 2a-DIra-nP 1
y F@+2-2y)  [PI7V6IP

n-1

(k=2,.n-1)

the abscissa s, are the roots of the following equation:
(1- 5, )RS (s,) = 0
and the collocation points r, are the roots of the following equation
PE() =0
The methods of evaluating the weight, abscissa W,, t, for Lobatto-Chebyshev
integration rule, W;, s,; for Lobatto-Jacobi integration rule and their collocation pbints I
and r,; will be the same as those described in section 3.1.6.1.

The single valuedness conditions become:

> WE(@)=0

k=1

3 WE @) =0

k=1
N n
Y Y, WdPEP(s,) =0 (3.83abcd)
1=0 =1
The expressions for stress intensity factors and strain energy release rates given in

the previous section can still be used in this case except for k(a,)

Redefining  k(a,) = LIII}I! 27 (x,+H,)10,,(%,,0)
Xy——Hy

we have (see Appendix E);
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k(a,) = (1'11)217;413;1:10(1) A |Wl|/ Bs +2 lell Bs

A=vyvsin) il B Pkl /B

+A +A - ] (3.84)
103 [|W3IW;| / [35 ]1 101 [IW3|W3| / Bs]'t

3.1.6.3 H-shaped cracks (a,=H,, b,;=0)

When a, = H, and b, = 0, the transverse matrix cracks intersect with the interface
crack to form H-shaped cracks as shown in Fig. 3.2. This configuration has been observed
during the tensile test of the uniaxial ceramic matrix composites. Since the power of
singularity at the point of intersection is zero, which has been confirmed numerically, ¢; (s)
will no longer be singular at this crack tip. Also, the kemels Kj,, K3, K4, Kj; and K,
become unbounded. In this case, because b, = 0, the numerical calculations will be based
on eqns (3.81a-c) instead of eqns (3.76a-c).

First, the singular parts of the kemels K, K3, K4, K3, and K, in eqns (3.81a-c)
will be extracted and integrated in closed form. Then the modified equations take the

following form:

.l.f [L_'_ K® (1,5)]0°(s)ds + 1 rke K° °(s)d
i1 sr na, Ky, ¢l1,8 ]¢1 (s) _L al u(r,s)- m(r,s)]q)l (s)ds

+ [, akaEoEds+ 2] (1,56 + T, ¥ 0)s

e 1- -
* %Lf_l, [(Ty-T1)y3(8)ds + (T - Ty, (s)1ds = -EME-pf(r) (3.852)
'YMEy

s, L1 o (e
[ ks er@ds +— [ [+ mks cologs)s

1= VoV pa(r) (3.85b)

l")2 1 o T30 -
+ E‘L [Toy3(s)ds + T2y, (s)]ds = W




53

-1 )
v+ L voE+ [ ace0e@ds + [} ales) - e,

+ [0 acEsgds+ %2- [\ e (r W39+ k3 r, 55 (s

1-v
=m, 2};’ y"p,(r)+1rn,

1
2G_ P () (3.85¢)

xy

where Ty = ki, +i ,“2 k%, Ty =k, - \/ﬁ: ks
W L

[ksu Y k41- T AR
P Ps YNz

Now defining ¢(s) = E’(s), the definitions for the rest of the displacement density

and C,(1,8) =

functions remain the same as in section 3.1.6.1. Then we have:

Eu: { T S lrl +M1ers( sk)]Fo(sk)'l'alw [K ( Sk) Klls( ,s'k)]F;’(s'k)
k=1 '3 3

a,W, K5, (ri,sk)F;(sk)}+ 2 2 [Ty,(15,) Wy di PO (s,) + Ty, (r8,) Wy Pf‘“’(s Y|
=0 fFl

N
‘52‘2 Y (Ty(rs,) Trrs, IW, RO (s,) + [T (138,) T8, )TWdi PP (s,
1=0

=l
1-v_v .
= N ¥ 0
= pr (%) (3.77a)
2v7,E, '
2 ¢ o (I} ors." Wk 1 o
> (WK (5,8 (5) +— X - + 78, KS, (r, )1 ES (5)
k=1 k
” 1-v. v
L3 2 2 [T,(55,) W, PP (s,p) + Talrys,) Wiyidh P Pl = —?j-:’zé.ipg(ri)
1=0 =1 YLy

(3.77b)

N & W dPP(s,) 1. WydiB P (s,,)
T

P S "'l' T 12 = s”-+r,i+b°
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+ 3 WaeE sOE ) + Y, Woal o) - e SO (s:)

k=l k=l

n b N n o
+) Wkazcz(ri,sk)F;(sk)-i-Tzz Y [Talrs,) W, di PP (s,)

k=1 1=0 j=l

— = —@ vV ) 1
F Ty, ) Wy L (5,)] = my ——2—2py(r,) +im, ——p, () (3.77c)

2E, 2G,,
where
.2
= =1,

W = Ta-D (c=L0)
) 1

W, = ; k=2,.n-1
* T R@-D P GF (=20l

the abscissa s, are the roots of the following equation:
(1- 5,2P%(s,) =0
W, and s, are the weights and abscissa of the Lobatto-Legendre integration rule.
The collocation points r are the roots of the following equation
P()=0
Again, the methods of evaluating the weight and abscissa Wy, t, for Lobatto-

Chebyshev integration rule; W, s,

for Lobatto-Jacobi integration rule and their
collocation points r; and r,; remain the same as those given in section 3.1.6.1.

The remaining four additional equations take the following form:

E(-1)=0 (3.862)

F°(1) =0 (3.86b)

[ xds=0 (3.86¢)

and [ 00 = [0, (ds (3.860)

The first two equations originate from the requirement that ¢; (s) remains finite at

both crack tips. The third equation is deduced from the single valuedness condition for
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embedded cracks in the fiber if a, is not zero. And the last equation states the condition of
continuity of displacement at the point of intersection.
Egns (3.86ab) can be directly used in the numerical calculations. Eqn (3.86¢) can

be written as:

Y WE()=0 (3.86¢%)

k=1

Using the fact that

[ ,(shas = % [ 3

byt .
=-l‘52'.[l W;(S)ds

LU A
2 ?cosh(nw)’

we have

T

B _ib,
J'_H‘(b,(s)ds =77 0 cosh(no)

Since J—: ¢,(s)ds is real, therefore,
Re(dy) =0 (3.86d%)

This result gives the last equation that is needed for the numerical calculations.

The calculation of the stress intensity factors at the embedded crack tips remain the
same, and needs no further elaboration.
3.1.7 Results and discussion for singular integration formulation

It is well known that the interface bonding strength contributes to the toughness of
ceramic matrix composites. A "weak" bonding strength generally improves the toughness
of the composite. A direct indication of weak bonding between the matrix and the fiber
interface is the existence of interface crack or defects either due to manufacturing or due

to debonding during loading. In the experiment, it was observed that under tensile loading,
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matrix cracks generated first and then propagated to the interface. Once the matrix cracks
reached the interface, they did not penetrate through the fibers. This means the fracture
energy available at the crack tip is less than the fracture energy of the fiber, and is larger
than the fracture energy along the interface due the weak interface. Thus, the energy is
released along the interface causing interface debonding or generating interface cracks.
The actual role that the interface plays has drawn a lot of attention by both involved in
research and manufacturing of ceramic composites. One can refer to [45,46] for detailed
discussions. The goal here is to explain or simulate the damage mechanism of ceramic
matrix composites by analyzing the interactions between matrix and interface cracks using
different crack configurations.

The numerical calculation for embedded crack configuration has been carried out
first. To check the correctness of the numerical procedure, some simple crack
configurations have been studied first. For periodic transverse cracks in the matrix and the
fibers without interface cracks, the results match those given in [23,44]; For interface
cracks without transverse cracks, if both H; and H, are set very large and the materials of
both layers are isotropic, the problem is reduced to an interface crack in an infinite domain
and the results from [25,43] for stress intensity factor at the interface were recovered.
Table 3.1 gives the results of stress intensity factors at the interface for four different
materials combinations. As can be seen from the table, the two results are almost identical.
Also, the strain energy release rates at the interface for the above four material
combinations were calculated using eqn (3.80%*). For isotropic materials, the exact
expression of the strain energy release rate at the interface was first given in [40] as

follows:

AE _ 1 (W +x1,)(, +X51,) 2 2 A
—— ki+k 3.87
By 2 IR, HA T 2) GD

where Y, and p, are the shear moduli of the fiber and the matrix respectively.




57

Table 3.1 Comparison of stress intensity factors

Materials K, (b) K, (b)
) Govb

Layer 1 Layer2 | Results from | Results from | Results from | Results from
[25] egn (3.79d) [25] eqn (3.79d)

Aluminum _| Epoxy 1 1.0000 01342 |-0.13421
Steel Epoxy 1 1.0000 0.1443 | -0.14431

Steel Aluminum | 1 1.0000 009158 | -0.091576
Nicalon | CASI |1 1.0000 0.071076 | -0.071074

The results using eqn (3.80*) differed with that given in eqn (3.87) by a factor of
/2. The strain energy release rates using both eqn (3.80*) and eqn (3.87) are compared in
Table 3.2. The error is within 3 percent. Considering the fact that all the derivations are
based on the orthotropic materials, and the isotropic behavior was approximated in the
calculation, the results are quite good. Table 3.3 gives the Young's moduli and the

poisson's ratios for the materials used in the calculation.

Table 3.2 Comparison of strain energy release rates

Materials Strain energy release rates
Leyerl | Layer2 228 i 387) 2222 i 3.30%)
T Ay . T Ay
Aluminum | Epoxy 0.397614x107° 0.402399x107
Steel Epoxy 0.384227x10°° 0.389954x107°
Steel Aluminum 0.239708x10°¢ 0.239753x10°¢
Nicalon | CAST 0.203262x107¢ 0.208256x10™
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Table 3.3 Material constants

Material Young's modulus Poisson's ratio
E (bin. -2)
Aluminum 1x10’ 0.3
Steel 3x10’ 0.3
Epoxy 45x10° 0.35
Nicalon 2.83x10’ 0.28
CASII 13.2x10’ 0.28

Next, the effects of the transverse and interface cracks on the tensile damage
behavior of the ceramic matrix composite are investigated. Suppose there exist both small
transverse matrix cracks and interface cracks or defects. First, let the matrix cracks be
allowed to propagate and the interface crack be fixed at a small value b/H,=0.01. The
stress intensity factors at both the matrix crack and the interface crack tips are calculated
and plotted against the increasing matrix crack length. Fig. 3.3 shows the mode I stress
intensity factors at the matrix crack tips versus the matrix crack length for both V¢ = 30%
and V¢ = 40%. The stress intensity factors increased first and then decreased as the matrix
crack approached the interface. The decrease of the stress intensity factors as the matrix
crack approached the interface is because of the fiber constraint effect. The mode I stress
intensity factors at the interface, however, remained unchanged at first and increased
rapidly as shown in Fig. 3.4 when the matrix crack approached the interface. Fig. 3.5 gives
the strain energy release rate at the interface versus the matrix crack length for two
different fiber volume fractions. The influence of fiber volume fractions can also be noted
here. Next, let the matrix crack length be fixed (a,=0.9H,) and the interface crack length

be allowed to increase, then the stress intensity factors at the matrix crack tips and
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interface crack tips were calculated and plotted in Fig. 3.6 and Fig. 3.7. respectively. The
mode I stress intensity factors at the transverse matrix crack tips exhibited a steady
increase until the interface crack length reached a certain value (b=H,). Fig. 3.8 shows the
strain energy release rate at the interface versus the interface crack length. The following
conclusion can be drawn from the above two cases: If both matrix crack and interface
crack exist in the composite, the matrix crack will first propagate because of the increase
of stress intensity factors at the matrix crack tips and the low fracture toughness of the
matrix. Then the crack will be arrested when it reaches the interface because of the fiber
constraint effect. On the other hand, if the fracture toughness along the interface is small,
the interface crack will grow due to an increase in the strain energy release rate at the
interface. Once the interface crack or debonding length reaches a certain value, the fiber
constraint effect is almost lost and the stress intensity factors at the matrix crack tips start
to grow again as can be seen from Fig. 3.9 where b/H, = 0.55. Eventually the matrix crack
will reach the interface boundary. This has been observed during testing. Another
important role that the interface crack plays, is to prevent the matrix cracks from
extending self-similarly into the fibers. As can be seen from the test results, fibers do not
break at the same locations as the matrix resulting in longer fiber pull-out length. The
variations of the stress intensity factors versus the increase of matrix crack length for two
different values of interface crack length are shown in Figure 3.9a and Figure 3.9b for
fiber volume fractions of 30% and 40% respectively.




3.2 Finite Element analysis

The H-shaped crack configuration is adopted and used to study the effects of
interface cracking and its progression on the tensile behavior of ceramic matrix
composites.
3.2.1 Description of the H-shaped crack model

From the experiments, it is observed that, after the appearance of initial transverse
matrix cracks, the stress-strain behavior starts to become nonlinear. With certain increase
of the tensile load (about 10 ksi), a regularly spaced multiple transverse matrix crack
pattern is formed. Once this stage is reached, further increase of load generates few new
matrix cracks until final failure. Therefore, during the period from which saturated matrix
crack formed to eventual failure, interface debonding, matrix crack opening and sequential
fiber breaking dominate the failure process. To capture the effect of damage accumulation
due to interface debonding, é configuration of periodic H-cracks as shown in Fig. 3.2 is
used where the interface crack length is allowed to increase with increasing load. The
popular ABAQUS finite element code is used with strain energy release rate as the
criterion for the interface crack propagation. First, the strain energy was calculated for a
certain interface crack length, then the interface crack length is allowed to increase by
releasing the node at the crack tip and the strain energy is again calculated. Thus an
estimation of the strain energy release rate G at the interface crack tip can be determined

using the following expression:

UpUnsr 0010, e
G tAD (n=0’ 1 ’2’ )

where U, and Up,, are the strain energies associated with the two subsequent crack
lengths, AD is the interface crack increment and t is the thickness of the specimen. If this

G value is greater than Gy (critical strain energy release rate), then the crack is assumed




61

to propagate. In practice, the G value at the interface is extremely difficult to measure.
Here we estimate Gy by matching one point of the stress-strain curve with the calculated

value. Table 3.4 shows the computed G for both Vg = 30% and V¢ = 40%.

Table 3.4 Estimated critical strain energy release rate G¢r

Fiber volume fraction L/2H, Estimated Gr
30% 2.5 85.36 (1bs/in)
40% 3.0 62.70 (1bs/in)

3.2.2 Finite element results and discussion

Before the finite element calculation is carried out, one has to determine the
matrix crack spacing L and the fiber spacing 2H, used in the model as shown in Fig. 3.10.
The ratio L/2H, affects the results significantly. Matrix crack spacing is determined by
averaging the matrix crack length from the micrographs taken during the experiment. It is
found that the matrix crack spacing decreases with increasing fiber volume fraction of the
specimen. The average matrix crack spacing for V¢ = 30% was found to be L = 166 um.
And for V¢ = 40%, the value is L = 111 pm. The fiber spacing varies with fiber volume
fraction, the fiber diameter and how evenly the fiber filament is distributed in the matrix
media. The average fiber diameter for Nicalon fiber is about 16 pm as measured from the
test results. Consider the case where fibers are evenly distributed in the matrix media,
then for V¢ = 30%, 2H, = (0.7)(16)/0.3 = 37.3 um and for V¢ = 40%, 2H, = (0.6)(16)/0.4

= 24 um. Therefore we have:

L
= 166/37 = 4.44 for V=
r = 166/ or Vg=30%

and L 11pa=4625 for Vg = 40%
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Considering the fact that fibers are randomly distributed in the matrix and that the
fiber diameter is not constant, the above ratios were varied between 2.0 to 3.0 in the
calculations. Fig 3.11 is a comparison of finite element results with the test results for V¢
= 30%. Fig. 3.12 shows the comparison for V¢ =40 %. It can be seen that finite element
results match the test results quite well at the start of the non-linear stress-strain curve.
Then the two results deviate somewhat as the load is further increased. This is because at
highér loading the fibers start to breai: as can be seen from the micrographs taken during
the tests. This contributes to the flattering of the actual stress-strain curve. It may also be
noted that the finite element results for Vg = 30% match the stress-strain diagram better
than those for Vg = 40%. This can be explained as follows: with more fibers in the 40%
fiber volume fraction specimen, more sequential fiber breakings occurred during the final
stage of the experiment after the saturated multiple matrix crack pattern was formed. This
can not be simulated by considering interface cracks only. Fig. 3.13 gives the stress
distribution in both fiber and matrix near the interface crack tips. Fig. 3.14 gives the

normal stress distribution along the interface
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Fig. 2.16 Typical fiber breaking pattern for Nicalon/CAS II specimen.




Fig. 2.17 Radom fiber breaking on Nicalon/CAS II specimen.
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Fig. 2.18 Matrix cracks density vs. the tensile stress
for Nicalon/CAS II specimen with V§=30%.
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Fig. 2.19 Matrix cracks density vs. the tensile stress at room
temperature for Nicalon/CAS II specimen with V§=40%.
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Fig. 2.31 Progression of fiber crack opening at T=400 °C
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Appendix A

From eqns(1.9ab), one obtains:

= (BI; D %f [A(c)sinh(w,0tH,) + C(e)sinh(w;0Hy)]osinarydor
0

2 I‘ " 80, le Wl wytog/Bs 4 Ay ectwiloy/BojsinousinaH,didoe (A1)
Y13 ﬂs 12

. S;I 2. %r [A*(o)sinh(w, *oH,) + C(a)sinh(w;*aH,)]asinoydor
0

2 J-“ 3 o (t) I\g, o-1w, *loty/Bs* +__‘L_'ILL_C lwg*laylﬂs*]sinatsinasztda (A.2)
13 5

aVI(aI.;bY) 4I [B,A(c)cosh(w;oH,) + BgC(c)cosh(w,aH )] acosorydar

_2(7 [ ) wl -lwyloy/B
I J %:;[-*Bgmgn(wl)e 1oy/Ps

+ —ﬁ;‘%"'ﬁ,@gn(w3)e"w3'ay/ BslsinotcosoH, dtdo: (A3)
s Ti2

- (él)-'l 2, %J’" [B,*A*(ai)cosh(w,*oH,) + Bg*C*(a)cosh(wy*od,)]aicosorydor
0

2." - j ’ QZ(—Q[ . < Bo¥sign(w,*)e Wi ¥lo/ Bs*

*m ]
+-|‘];v * 1o*sign(ws*)e"Ws*'ay/ﬁs*lsinatcosasz‘d“ (A4)
5 112

Using the following integral formulas:

J; e-alsinbt dt = PO +b2 and J; e alcosbt dt = azibz a0 (A.5ab)
equations (A.1-A.4) reduce to:

= (BI;I( D %J‘- [A(a)sinh(w,0H;) + C(o)sinh(w;0H,)]aesinorydo
0
20 9,0 .
¥ ”J; 2Y;3 1(by)de (A.1%)

% (a? )4 J"[A*(a)smh(wl*aHz) + C*(0)sinh(w,*oH,)]asinatydo




2 0
+1Jo %;;Gz(t,y)dt (A.2%)

av] (H1 ’Y) 4

3y j [B,A(a)cosh(w,0H,) + BgC(a)cosh(w;oH,)]acosorydar

2" &0
-2 J; %}{;Gs(t,y)dt (A.3%)

aV (' 3 ) 4
—za—;‘LL 4 L‘ [B,* A*(cjcosh(w,*oH,) + Bg*C*(a)cosh(ws*oH,)]ocosaryda.

2% 9,0
‘:Jo %;1‘34«,»& (A4%)
where
G1 (t,)') - Wl l ' S 5 3
 (lw,ly)? !
m_x Iy
lwill BS ﬁs 1 ( A6 )
|  (waly)? ! e
Iwy *ly fw, *ly
twy* Bs B
G,(ty) =~ * Llw ¥l 3 1
B .(_B.I:ZXL - ) L“_éls_*l¥)_ +(Hl +t)2
Iw. B;“Ix Iwa*ly
IWq*l 5 Bs*
* L(lw.¥| Tw.*l 1 (A.6b)
BS .(lvl_;_l)_ +(II1 )2 gﬂﬁ’ls_;g)_ +(I'Il +t)
[5981gn(w,)lw, H -t H,+t
Gy(ty) = 2 2‘ ]
ﬁ] oSIgn(Wa)lwal'Yn H,-t H,+t 1 (A.60)
l ! '
Bs Y12 .(ﬁﬁ‘di H,-t)? ﬁ—g%iz-_,_mlﬂ)z
Bo*sign(wy*)lw,*|_ H,-t H,+
G,ty) = * Liw*l ; 2
. BS K_WBI_XL +(I'Iz t) g_\%;lg)_ +(H2 +t)
ﬂm*Slgn(Wa*)'W:q*rYu [ H,-t H,+t 1
(A.6d)

Bs* *(lw,*| !
5 Nz gﬁﬂ—ﬂ'ﬂﬂz £)? '('“é:;LzYl'-i-(I'Ig-l-t)z




Applying (3.14ab) and (3.21cd) to eqns(A.1%)-(A.4%):
09 == [ [ACIsinh(wot) + Clodsin(wsoy)

+ A¥(o)sinh(w,*aH,) + C*(a)sinh(w,*aHy)Jassinoydo

2% 6@ 2 [0
+1tJ:, %‘Y‘l;'Gl(t,y)dt +1tJ:, %;%Gz(t,y)dt (A.7a)

64(5) = -;- '[) " [B,A(0)cosh(w,0H,) + BeClor)cosh(w,aH,)

- B/*A*(o)cosh(w, *aH,) — Bg*C*(a)cosh(w,*oHy)Jacosorydo

_ -72; j ) %}'Y(L)Gg‘(t,y)dt - -,2; J " :ﬁ_@(t,y)dt (A.7b)
0 13 0

()
2Y
Taking inverse cosine and sine Fourier transforms for both sides of eqn(A.72) and

(A.7Y) respectively, one gets:

A(a)sinh(w,0H,) + C(o)sinh(w;0H,)

+ A*(a)sinh(w *oH,) + C*(a)sinh(w,y*aH,) = R (o) (A.82)
and

B,A(a)cosh(w,0H,) + BzC(o)cosh(w;0H,)

— B *A*(c)cosh(w,*aH,) — B*CH(ocosh(ws*aH,) =Ry(0) (A.8b)

where

1 . 2 (~ ™ Ql(t)s -
R,(a =-——-—2aJ.o <]>,,(y)s1nozydy+m““0 jo ™ 1(ty)sinaydtdy
2 (" [ 20 ”
L X J; 4y,5* ,(ty)sinarydtdy (A.9a)

1 2 ("™ o)
Ry(@) ='2;J; 3(y)cosorydy +5L J; %’;;Gs(t,y)cosaydtdy

2 (" [ &0
-= .[, Jo %;;04(t,y)cosaydtdy (A.9b)

Using the following integrals:




iv

J“ G, (t,y)sinoydy =~ g'(e‘amrt)ﬁs/'wll — e 0(H, +)Bs/lwyly
0
+§$1(e-aa{rt)ﬁsﬂw3' — e-O(H+)BsIws (A.102)
12

r G,(t,y)sinotydy = — g(c‘a(Hz‘t)Bs*/lWl*' — e 0 (Hy+0)Bs*/iw ¥l
0

+ %“;(c'amz't)ﬁs*/lws*l — e O(H+)Bs*/Iwy*) (A.10b)
12

Jm Gs(t,y)cosaydy = gsign(w,)ﬁg(c'aa{rt)ﬁsﬂwil — " O(H, +t)Bs/1why
(]

-%ign(ws)ﬂmf%e-a(Hrt)BsﬂWs'— oM HBsMh  (A.100)
12

J‘- G,(t,y)cosaydy = ‘1'2c‘sign(w1*)Bg*(e’“(Hz't)Bs*ﬂWﬂ — e~ (H ) Bs*/Iw ¥l
0
-—gsign(ws*)Bm*%e‘aa‘lz't)ﬁs*ﬂws*' — e~ O(H,+1)Bs*/ws*l) (A.10d)
12

eqns(A.9a) and (A.9b) are finally reduced to:

L [
R, (o) =—5;J ¢4(y)sinaydy
b, .

1 1
J—. 0,(O-e-CH;-OBswy| 4 le-auH-0Bg/Iwsl 1y

+
dovyys 12

"2 .
J 0, (1) [—e-OC(H OB s*/Iw ¥l +$u;(e‘°‘(1‘lz‘t)55*/|ws*| Jdt (A.11a)
12
2

* 4oy, s*

and

1 b,
Ry(a) =£J‘ ¢3(y)cosaydy
by




r— | 6 Olsign(w) By OEOBYWI — sign(wn)Bete-oEr-0BYWs 1at
4ov)3 " Oy

3.2
_4°"1Y13*j q)7'(t)[5ign(wl"‘)Bsa""?«'"‘(Hz't)Bs"‘/lwl"‘l

L]

. *
- sign(wy)Byo*y g O Er 0P AW jar (A.11b)
12
Applying the continuity conditions (3.13ab) and (3.14ab), one derives the

following:

j > 2[y,A(cr)cosh(w,oH,) + ¥4 C(c)cosh(w;0H,)
0

~ A1 *A*(0)cosh(w, *aH) - A,y4*C*(c)cosh(ws*oH,)Jocosorydar
== alMSinatdt[Yle’lwxlay/ Bs - v Tt lwiloy/ BsjcosoH, dat
0’0 M3 ZYIZ

xg 2 *
+[ ™ f sinoudtfy,*e- Wi oy/Bs* - yrlle-tw*loy/Bs*[cosabLda  (A.12a)
N3 T2
0/0
and

J * 2[yoA(e)sinh(w,0H,) + ¥;C(c)sinh(w;0H,)
0

+ A Yo *A¥(a)sinh(w, *oH,) + A,Y;0*C*(a)sinh(ws*oH,)]asinayda

= —J“Jalmsmamwll[e'lwxlay/ Bs - e-Iwslaey/Bs]sinaH,dot
N3
0/0
- I o J 2 2‘f‘-:k’?sinomny,l*[e-lwl"‘lcty/Bs"‘ - ew3*loy/Bs*jsinoH,dor (A.12b)
13
070

Applying inverve Fourier cosine and sine transforms to (A.12a,b) respectively,
we have:

[v;A(o)cosh(w,0H,) + Y4C(a)cosh(w,oH,)




— A Ts*A%(0)cosh(w, *oH) - L yg*CHacosh(ws*aH)la=Ry(0)  (A.13a)
and

| [YoA(a)sinh(w,0H,) + ¥,C(0)sinh(w,0H,)

+ A, Yy *A*(o)sinh(w, *oH,) + AY;0*C*(ar)sinh(w,y*oHy)) o = R(a) (A.13b)

where

2 t 2 0]
R;(a)=-;J°° J al%t)sl(t,y)cosaydtdy 2 J o J 3 ';‘%;Sz(t.y)cosaydtdy (A.148)
0Jo 0J0
2 t 2 t
R,(@)=" J o0 J’ al%y(l_:S,(t,y)sinaydtdy - J oo J 8 %&&—)84(t,y)sinaydtdy (A.14b)
0Jo 0J0

and
TN H,-t 1
[(t’Y) [ ‘Yl! W:l!! +(I'Il )2 * YZ\le)LM‘F(Hl‘t)Z

Bs? Bs?
H,+t Yii, H,+t ]
+ [Y( y)? '( waly)? (A.153)
l V;;L +(I‘Ix'*‘t)2 (Y B2 (Hl"'t)z
H,-t YH H,-t ]
S,(ty) =[-1* +0*C 2
2 ! S%Jf_lz)_ (Hz-t)z "le* LJBEIX)__*_(HZ,OZ
s
H,+t Y, Ho‘*‘t
+[n* (w,*ly)2 - ( *ly)? ] (A.15b)
l B*I +(H,+t)? (Y Be*2 +(Hz+t)2
lwly Ivealy
Ss(ty) = 'Yn (Iw mﬂs - g IEQZB-:(H -t)2]
B B2 1
I, ly Iwaly
Bs Bs
=Tulg > ] (A.15¢c)
QEJ;Y)-+(H, +t)2 -(M*Bs‘%)—ﬂ}llﬂ)z
Iwy *ly Iwa*ly
Bs* Bs*
S(ty) =1y *[ *v)2 1
S_ﬁl_yl (Hl ) ﬂlﬁ“;ﬂ:l%l_*-ml-t)z
Iwy *ly Iwy*ly
Bs* Bs*
=M*[ (Iw,*ly)? = (ws*ly)? ] (A.15d)
v;; +HH, +)? I“[; *Iz +(H+1)?



With the help of the following integrals:

J“S,(t, Yeosoiydy = -%ﬁj(e'“mrt)ﬂsﬂwﬂ — e (H, +)Bs/twy
0

+m’-§5(c-a(Hrt)Bs/'Ws'—e-a(Hﬁt)Bs/‘%') (A.162)

29p5lwy
*R_*
J“Sz(t,y)wsaydy = -%c‘“a{z")ﬂs*ﬂwl*l — - OH,+)Bs*Iw *l)
0
27 *Iv: 0y t)Bs*Iw*| — -0y +OBs*/ws™) (A.16b)
124wy *l

I 2o5,(ty)sinaydy = +-’25!|';%i(e-a(ﬁ,-t)ﬁsllw,l _ e o(H+)Bs/ W
0
- > |w3| -e-a(Hl-t)Bs/IW3l - 'a(H1+t)B5/|W3I) ( A.160)

I“S4(Ly)smaydy %Xf—%l—( (- t)Bs* /vy * — o-0(H+1)Bs* 1wy *hy
0

-gz‘l-‘é%:(e-a@rt)ﬁs*ﬂ%*l — e-O(H,+)Bs*/w*1) (A.16d)

R,(0) and Ry(cv) are finally reduced to:

Ry® = 7o ™ ¢l(t)[1‘§-|‘e au(H,-0)Bs/w, | —%—amrﬂﬂsﬂ%l 1dt
-al
- %‘;‘?frc‘a(Hz't)Bs*ﬂwx by 712*|w3*r -0 (H,1)Bs*/iwy*l e
(A.17a)
and
R (o) = -—1;{; OB T -a(Hrt)lelwll +——e-a(H1-t)ﬁs/'Ws' 1dt

-4y

*B*¥A, [ r—*-ic -o(H,t)Bs*/wy*l + ""—(c‘a(Hz't)ﬂs*/lws*l ]dt

(A.17b)



Appendix B
Definition of material constants for both layers. A superscript * will be used for the

material in second layer.

yy= 1420 VWb w,B, _ Vv, Wy

Bs

'Ys=\’xy'*‘13'2"“:L Ye= V. "“E‘E—s Tr=VxyWi + B, 18 = VxyWs + Bg
s

5

Yo=—1+B;w, Tio= —1+Pgw;

Y=~ IE'_:[ +sign(w;)By

N2 = "]‘g_:l +sign(wy)Byq 3= sign(w;)B, - " 81gn(w3)[3w
14—-2—[7;-%:%] A= g"i“%:_:& 7\fz=g§‘

A3 =PBeYsBYs A= xl‘Y; BB:vs As=MYBi~BYs

As =T~ "o M =1— Yok, he =Yo ~ Yioky

A=Ak, Mo=23Aq Mi=2AsYs

M= Aehy M3=Ash Ma=AeYs

Ms=AqB, Mg =238, AMa =3B + A5

Ag=AB, Ao =M3B; +A5)By A=A

Ay =hs —1sBs A =1B, Azs=PqBs

Aaa=Ayohig —Aghyg Aas =My Aas = Ayahig = Miohis

Az = Aghag = Aizhy Mg =Aghyg | Mg =Aighio— Mishyy

Ao =Aishig = Aihogg Ay = MhagAohg A=y

Az =Mghia = Ay A =Aghy = Ay Ass =Aghy

Mg =—Mghir = Aarhyy A7 =Mghig = Aghyp Asg =Ashis— BiBiAg

Aag =Aghyy M= Mishiz = Aighos Mgy = BiBrhia = Mishig

A=Ay Az =Ashy Moy =Ashg




Mas = hohis = Aiphs
Ags =Aehis = Miohy
sy =Aghio + Ayzhyy
Asq==A1ohss
As;=Ashyg

Ao =To(hahro — Ashyz)
Az =—Ag(1sBs +2s)
A =Ar(Brhg — Ashra)
Ago=Ashyz = Aehyg

A=A Bs gy —Ag) + Behs(ro — 29))

M3=2y (o= 2)

Ars =Aghs = Apshs + By (Ag¥s — A1)
Ap= B; AoBr = A519)
A= 7‘30%5; - 7‘55; )

Mg =Aypho = Aishy
Mg =Mzhas = My
sz =hoBsBy — Mishis
Ass =Ni3hgs = Myshyg
Asg=—=Adis(hg — %)

A1 =T3P (Ao — 2)
Ay =—PB:BiA1o—29)
A =—A

Mg == Ak
Aso=—A1ohay
As3 = Ayshag = MiaBiBy
Ass == A3hag

Asg == Ash1(Yo = A7)
Aez = Ag(Yshy7 + Aghay)
Ass =Ag(hehos — Bihiy)
Aes =Ashig

Mo =A3(B7 (g — Ay) + Behy(rs — %))

A2 =B7 (ks = Adgs) + By Asdip — Ak

Ma=Aihs = Ayghy + B Aighs = Ayg¥s)

M =Aphio—Ag)

A= B: (shs = Brks)
Ao =Apg + Ags + hyg + Ay = Ry + Agg
Mg == Mg —Ag; =gy + sign(w)Be(Ras + Agg + Mis)

l I (7\75'*'7\71’*378)-1"3—!3'"@43“7‘57"'379)
l 1

Agy =— Asg = Asg — Ago + sign(w)Bg(hg; + Agy +Ag3)

+ Ei(’w'*‘ Aes+Ags)— iY‘"—ié"( Mgy +Agg + Ag)

|W1

Aes = *" P+ day+ Ao - 7" Psign(u)Bualdas-+ Aoy + )

|W1|

LLI 3' We‘*‘%*‘lqs)‘*'%ﬁr‘oua'lﬂ*"\w)
W3

A= ',Y"Lo'ss + sy +Ago) — Yo Slgn(Ws)Bwo\sl + gy +Ag3)
12



Z" %‘lo‘u + Ags + Age) + —"‘YI" l Ay + Mgy +Agp)
1 [Ws W

=Y.
has =Yiha 'Yu'Yu Mg = stu'Yu'Yu A 7%3713714130

Ago == Ayg = Ay = Ay — sign(w))Bg gz + Mg+ As5)

Ags =Ygy Yu'Yux

M7 IPJ'[("\% + A+ Mag) = MYy l‘j‘[ous =Asy +Ayg)

Ago =—Asg — Ao — Ago — sign(w))Bg (Agy + Ay + Ag3) |

- l'1'Y;I£,"=[(Ns4 + Ags + hgg) ATy I%:l (g + Agg + Agg)
1 1

Aoy = ZP P+ +2p) + ;—lllsign(w;)ﬁ;o Ags+Agg + Mas)
12

e *1' ]—i[o», +xw+zqs>+mnlﬁzla“—xg+w

'Yn
-——-0» + Ao+ Ag) +
Y 58 59 60 ,Y

12

sign(w;)Bio (Agy + Agp + Agz)

N Yl-l ]E{'[(l“ + g5+ Aeg) + MYy ]%;‘[0‘67 + Agg + Ago)
3

: =Y. .
hes = 772'89713714 el 78190713714130 hos = Hhor e 7137147‘30

Agy = -Ays = Agg = Ay + sign(w)Bo(heg + Asg + Asy)

Moo = Yhsrr 'Yu'Yux

I I (7‘-52 +Agq + lss) | I T gy + Agg + As9)
l l
Agg = - gy — Agp — Agy + sign(w;)Bo(Aay + Ays + Azg)

I | 0‘38""'\’39'*‘7‘-40) T‘;B"(l-tz"'l«as"‘l.t‘t)
1




Ay = %u'ous +Ag+hg) — —zﬂ—sign(w;,)ﬁw( Mg+ A5y +As)
12

12

-In E‘L‘z‘o'sz + A+ Ass) + _uP_;_(Mz +Ags+As7)
Y2 IWz lw,

Moo= ‘_':_u.om +A5+Ay) - %‘:Sigﬂ(ws)ﬂxo( Mg+ Ags+ Az)
1

_In E’—l(kg'*'xw"‘k-to)"'m( Ma—rg+dy)

Y12 st I t
i .
| - : 'Y
‘ LN‘Y’ 'Yxs'Yulso 2= Aoy 7137147‘-30
|
Agg‘Y - l 'Y‘ .._._1__._.
! 'Yu;'Yul 104 = 10078 7137;4180

Mos == Ags — Agg = Mg — sign(w))By (g + Aso + Asy)

- A'x‘Y;I'E%[O-sz + Ay + Ass) =My Ty l%ﬂ(laz + A6+ A7)
1
Mog == Ay = Mgy — Agg — sign(w;)By (Agq + Ags +Agg)

-xn;r%ﬂogsnmuo) -m:,F‘f;[<—xa—x4s+w

Mo = Y, (7\'45 +Ast+Ay) + 7"5180(“’3)[310 (gg +Asg +Asyp)
2

+M ik zn ]E"[O\sz + A5y +Ass) + MYy l“LIOHz +Asg +As7)

12

g+ Agy) + *" B oy + has + )

108 =

+MY; Zl ]ELl(kss + A+ Age) + Aoty ﬁ("uz -Agtiy) 1

v




. 1
Ajgo =A Yo
109 708 77137147‘10

e 1
M =’~107'Y1',;-"‘_“'

0
13 14A'EO

ps= Yily +Yihe
TY1shso

Py = Vi +Veheo
Y she

Po= Yory +Yiohe
Yl

Py = Yohs ‘."'Y]oxg
TYhe

- Y7 (Mg + Ay +As5)

P1s TY1hgo

g Y1 (A +Ay +A5)

TYihso
o= Yo (A +.l,° +Aq,)

T 1ehen |
Pro= YiAes +‘l4g +Ag)

Tihs

« 1
Mo =MosYs——

k] 14130
y Wy § 'Y. .._._l.'.._..
112 108178 Y. .

13 14A'l0

Pe = Yitg +Yeky
il

Ps = Yiro +Vho
YA

Pro = Yohs +¥idhu
Tl

Prp = Yoho +¥10he
TY1shg

- Yshey +Ag +Ag)

14

TY1ehg

y _Ysss +As +Ag)
TY1hg

_ Yaay Ay +hy)

18

2 Y W

_ YiQy +hy +1y)
Wik

P20




Appendix C

f,(cr) = tanh(w*,0H,)tanh(w*;0H,) f,(x) = tanh(w*;0H,)tanh(w,0H;)
£,(0r) = tanh(w*,aH,)tanh(w;0H,)  £,(a) = tanh(w*,aH,)tanh(w;0H,)
£,(0r) = tanh(w*,aH,)tanh(w,0H,)  £,(c) = tanh(w, 0, tanh(w,0H,)
£(0r) = Ay (@) + Apsfr(00) + Agefy(00) + Agyfy(00) - Apgfis(00) + Aygf(cr)
£1() = Aygtanh(w*;0Hy) + Ayytanh(w*,0H,) + Ag;tanh(w;0H;)

By () = Agafy (00) + Agafs(00) + Agsfiy(00)

m, (0r) = Agef () + Apsfs(00) + Aggfy(c)

n,() = Aggtanh(w*,0H,) - Ag;tanh(w¥*;0H,) + Aygtanh(w;0H,)

£5(0r) = Asgtanh(w¥;0H,) + Asgtanh(w*,0H,) + Agotanh(w,0H,)

hy(0) = Agyf (@) + Agf5(00) + Agsfs(00)

(1) = Agefy (0 + AgsEr(00) + AgsEs(00)

n,(0r) = Agytanh(w*;0H,) + Aggtanh(w*,0H,) + Aggtanh(w,0H,)

g5(0) = A stanh(w*;0H,) + A gtanh(w;0H,) + Aytanh(w,0H,)

ha(0r) = Aygfy(@) + Asef(00) + Ay fs(c0)

my(0) = Asyf5(00) + Agefar(00) + Agsfs(0r)

ny(0r) = A tanh(w*;0H,) + Asgtanh(w,0H,) + Ag;tanh(w,0H;)

g4() = Azytanh(w*,0tHy) + Agtanh(w,0H, ) + Agztanh(w;0H,)

hy(0) = Agefy (o) + Aysfis(0r) + Agef(00)

m, () = Agef, (0) + Agpfs(0) + Ayofs(0r)

n (@) = - A tanh(w*,0H,) - A gtanh(w,0H,) + Ay tanh(w;0H,)
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Appendix D

Consider the following integrals in eqns(1.29¢,d):

b, b,
J Ki;'(y,0¢5(t)dt J K '(y,0),(t)dt

b b
b, b,
J Ko'(y:00,0)dt J K (5)0,(t)dt (D.1abed)
by b
where
oo 1 chtwmax) ch(wyox,)
Ky3'(y.t) = }.1_{2' "J: [ch(wl aHl)Ig(y,oc) +ch(w3 aHl)Jw(y’a) Jeosatdo
T | ch(w;0x,) y3h, (r) Ch’(w:;axj) Ysho ()
= bm m ) “ch(woH,) f(o) ¥ Ch(wyoH,) (o JcOSOycosoudar

1 [ chtwox)yihy(@) ch(wiox,) Yha(0).
= xl,lﬂ, . o ch(w,0H,) £(0) *h (wyoH,) £(00) J[coso(t-y)+cosa(t+y)lda  (D.2a)

o w1 chlwiox)) ch(wy0x;) ,
Ky, '(yt) = ‘.11_1.’1; n'[ [Ch(wlaHl)J‘I(y'a)+ch(w3 aH,)le(y’a) Isinotdo

[ Ch(w;0X;) y,2,(00) . ch(wa0x,)Y,8,(00)
== lim~— .
x-n T ) ch(w,aH,) f(a) + ch(wyoH,) f(00) Jeosaysinotdor

e B ch(w,0x,) 128,(0)) . ch(w,0x,)¥,8,(c). - . .
=— ‘1‘1_13 o J‘ ch(w,0H,) £(0) *h (wyoH,) f() J[sinou(t-y)+sina(t+y)ldoe  (D.2b)

0

R | - sh(w,0x,) sh(w,0x,)
Ka'(yit) = m 1tJ: [ch(wl (le)J 13(y,0) + ch(w, a.Hl)J 14(y,0) Jeosatdo




i L[ shonoxwh(@) | shewiaxy) yigho(@),
T o x| lch(waH,) flo) *ch(wsaH,) f(o)

sinacycosoitdor

=lim J[-sina(t-y)+sina(t+y)lda  (D.2c)

1 “[sh(w,ax,wqh,(a) sh(w0x,) Yychy(00)
T a2 A

ch(w,oH,) f(0) ch(wsoH,) f(x)

o1 showax) sh(wsax) .
Ki) = lim J: oo o) 500 * gty 160, Jinoudo

g L[ ShOmOx ) (@) | shivso,) pigg(@)
x-n, T \ ch(w,oH,) f(a) ~ ch(w,oH,) f(or)

Jsinotysinotdor

[cosa(t-y)-cosa(t+y)ldoe  (D2.d)

o b psh(wox))Yog: (0) +Sh(W3ax1) Y1082(0).
=¥73 ] Leh(w,oH,) f(0) ~ch(wyaH,) f(a) °

As o approaches infinty, we have:

zzg::gxrf,))ﬁflzg) ¥ :11:((::&“;',)) Y?l(lé(f G =g eom@ix) cgeon@in - D3)

h h :
{fh((:::ﬁ'l))%fg(g) ) = o) ¢ o) O3
lcsn}:((:vvlgﬂ))ﬂfl(g) *‘-:11:((:::211))% = L) + feam ) 30

sh(w,0x,) Yog,(®)  sh(wi0x;) Y1082(0). , ) ) )
chiw,aH) £0) * oh(wioHy (o) 1= e WM + e X) D34

where &i(i=1-8) are material constants and are expressed as:
E = Yiasth i) 4
PSRt Ao Ao #hg = hog #hsg (©.4)
Yahgrthethes)
= o Tas g g~ o P .4
_ YaPaotAg +A,)
= Fa s+ gty D-4c)
_ Yasgthsothey)
o s oy D)
Yo(AgatMatAqs)
85 = Rt s+ hagHhay g ¥ (D .4e)




_ Yoy Hhgrthes)
56 = Raat R+ Do Hhyy — Ay ¥y ®-4D
£ = YoPaath+hs,) (D4.g)
T Ragt Ags+ Ay Hhyy = Ayg +hyg &
£, = Y1oPsgtAsetAcy) D4h)
87 Mgt hgs+ A Hhgy = Ayg +hyg )

Using the following formulas:

lir'n; e‘awlairxl)[cosa(t-y) + cosa(t+y)]da = n[d(t-y) + S(t+y)] D5.a)
X~
[]

and

tim | oW Elsinatey) + sinalery)lda= G + o) D.5b)

XK,
0

The asymptotic values of eqns(D.2abcd) become:

HI.?, —211: [E,e- 0w (H-x) 4 ézc'awsail‘xl)][cosa(t-y) + cosou(t+y)]do
l..-O
0

= -‘;—'[act-y) +8(t+y)] D.62)

[E;e- 0wy (Hy-xy) 4 £ e-0w3(Hy X)) [sino(t-y) + sino(t+y)ldo

x,—H, 27t

N S S
=T oaty Ty (-6b)

lirg —-217: [Ese-ow (H)-x)) 4 &ge-0W3(Hy X)) [—sino(t-y) + sino(t+y)lda
X,
0

- P, 1 1
= 2ty iy ®.62)

- HIE_ —211c [§-,c’°‘W1(erx) + §8e'°‘W3(Hx'x1)][cosa(t—y) - cosa(t+y)ldo
X, =]
]




where

b, b,
J. K ') (dt = - 225‘4’4()’) + J K (y,0)0,(t)dt
b b
T - ch(w,ox,) y;hy (@) | ch(wyax,) y,hy ()
Ks(t) = lim Zn‘[ (ehwioH,) f(@) *chiw,aH,) f(o)

- [§le‘°‘W1(Hl'x1) + §2e'°‘W3(H1“xx)]}[cosa(t-y) + cosa(t+y)lda

[T, chwox) e (@) | ch(wiox,)Y,e(0),
Keulyt)== lim 21:_[ (ChewyoH) (o) T ch(wyoH,) f(c)

- [§3c'aW1(Hl'x1) + §4c'°‘W3(er1)]][sina(t-y) + sina(t+y)]da

1 [T shiwox) Y@ shwox) Yighy(e)
K43(y’t)—x1,1-xol‘i. 2EJ‘° {[Ch(wlaHl) f(a) +Ch(W3aHl) f(a) ]

- [Ese Wy (H)-Xy) 4 E e-0W3(Hy-X))] ) [—sinou(t-y) + sino(t+y)}dot

e L ) sh(w,0x,) Yog, (@)  sh(w;0x,) Yy08,(00)
Ku(r.9=-lim 21:J2 {[ch(wlaHl) flo) * chiwyoH,) (o)

- [§7e‘“W1(Hl’x1) + §8e‘°‘W3(Hl'x1)]}[cosa(t-y) - cosoi(t+y)]do

]

(D.8d)

(D.9a)

(D.%b)

D.9%¢)

(D.9d)




Appendix E  Derivation of stress intensity factors and strain energy release rates
i) Case of embedded cracks

The stress intensity factors at the transverse crack tips are defined as:

atx, =a; k(a;) = E_ﬂ‘l J2(x,~2,) 03(x,,0) (B.1a)
atx; = k(a) = Lim J2(x, —8,) 0, (x2,0) (B.1b)
From eqns (3.29a), for Ix,| > a; we obtain:
2714E1 ¢|(t)
’ = d ) .
oW®0 =2 oy [ a6 ,0) E2)

where oy, (%, ,0) is a bounded function, and

o) = E() __ Em®e™
Jai-t? (t—2,)"(t+a,)"”

From [33] if we introduce the sectionally holomorphic function ¢(z) as

‘L ¢,(t) &) 4

1 t—Z

then we have:

B (—al )e F (a l)
P (2*!;)"2 (z+a, )"z (2a, )1/2 (z— a,)m + @,(2) (E.3)
Substituting (E.3) into (E.2) and from the definition of (E.1a), we have:

2Y.E,
k(a,) =-
()= oy, J— Fy(a)) = (1 v, J’ E()
Similarly
2714E 1 2714
k(a,) = - L E(
@)= v e P Frara s TR
Now consider the stress intensity factors on the interface.
From Eqgn (3.55), we obtain:
p, 1=V .11 1 ¢t yi(s)
= — ds i >1
ppaps  2E, P; 2G, ) W s—r
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ooy F;’(s)c”'
where ;3 (s) = D561
Again from [33], we obtain:
! \Vo(s) 2 o
=l Pl Ul O +1)“’( Sy B0 +EO)

where Fp(r) is the principal part of y; (r) at infinity and is bounded. Therefore:

1-v v, ['_ 11 : ,

* Multiply both sides of the above equation by -i, then we have:

1- (o
11, ) - i O Hyt) = 1=

Ps ZG Ex VP: PaPs (r "'l)a’( -1k

E@®]

Now if we define the following stress mtcnsny factors at the interface:

1_
Ll @i P 1VeVey 6

1
p; 2G,, Voo ZE,
[ 1-v_v
= Lim (r+1)*(r~ 1)“'[———0 H,1) - i 226 Hn) ]
Ps 2G byt VP:P:P:; 2E, ! !
then we obtain:

1 [ 1-v_v
o 2G k(1) - i VP ZEV 2k (1) = F1- EC (1) (E.4)

l X

In order to derive the expression for the strain energy release rate at the interface

crack tip, we first éxpress ; (r) in terms of k, and k, , then from (E.4), we have

T+ @-Pe™ 1 1 [ p. 1-v. v
‘l’ ()=" [ -1 4 Xy )xk]
3 : "/l—cz Ps ZGW 2 PiP2P;  2E, !
1 1 I 1- ~Vy Vi ( ) 1
=k <1 &S5
‘/1 s [93 2G VPxPzPa 213: ! 141/ J1-1? <1 &3

Noting also that:




1 G\ i el S
><—-——\/i \/E [cos(colog(z)) +1 sm(mlog(z))] (E.8%)

The oscillatory behavior in (E.8*) can be removed using the techniques described
in [40,42). Considering the fact that the stress intensity factors and the displacement
derivatives just away from the interface crack tips should have definite values. Therefore

we can chose 1 and ¢ in such a way,

mlog(lz‘-) =0 and mlog(-g-) =0

In fact, for most material combinations, that above two quantities are indeed very small.
Then from eqns (E.7) and (E.8¥), we have

= 1 k o) =_.1_.k
T 2dn? =T 2
Av =(v;-vy) = 242 1 1 k
‘ Jl G, P 2G,,
1-
and Au = (uup) =242 1 17V Vn

'Jl CI 2Ex '

~ Assume the crack front was closed along the interface by an amount Aa

then using the method given in {44], we obtain the increment of the strain energy:

AE = 2" [0, Au(r-Aa) + 6, AvG-Aa)]dr

2 11l-vyv, K4 K] rm J1+Aa

"G e, 2, pszc ST
1-
2L et e ks
1/1 Cz P2 ZE Ps 2G,
Therefore, the strain energy release rate will be
1-v,
AE 2 1 +__1_ 1 2] E9)

A I7G p, 2, 95,30

xy

For Isotropic materials we have:

1l-vov, 1 1
P, 2E, p32G

then



AE _ 2 1 1

ii) Case of transverse crack touching the interface

[ k+k] (E.9%)

Define the stress intensity factor

k(a)) = xf:‘..‘%, 27 (x,+H,)10,,(x,,0) (B.10)
from eqn (3.29b), we have
2v,.E h
Gy (x1.0) = —— T | K, (x,, 0)0,(0)dt + 63,(%3,0) E.11)

1[(1 - Vw Vy‘ ) _Hl

where 63, (x,,0) is bounded function and

¢ (t) = Fl (t) - Fl(t)cir
T EHE-2)Y T -H)(t+H,)!
B,
Again define: o)=L 8y
W —H, t -Z
then we have:
F(-H,)e™ F(H,)

= - + 12
Y= GHY s mGrEy @y snmyG-Hy | @ €12
Substituting (E.12) back into (E.11), and then from the definition of (E.10), we have:

EPLERO | w8, b/,
(I_V;V;I)Sin(m’) lﬂw; th'/ 55]1 [lW;le‘/ ﬁs]7

+ M3 = ./ﬁs 7+ JL101""!‘,—3]:/&"{] (E.13)
[|W3|W1|/ ﬂs] [lW,IW,I/ BS]

The stress intensity factors at other crack tips and the strain energy release rate at
the interface crack tip remain the same.

k(al) =

ili)  H-shaped cracks
The derivation of stress intensity factors and of the strain energy release rates at

the interface crack tip remain the same as those given in section i).



